TCP socket distributed

This commit is contained in:
Angelos Katharopoulos 2024-09-04 02:32:25 -07:00
parent 97a9561e34
commit a9746587f1

View File

@ -5,14 +5,77 @@
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#include <chrono>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <thread>
#include "mlx/backend/common/copy.h"
#include "mlx/distributed/distributed.h"
#include "mlx/distributed/distributed_impl.h"
#include "mlx/io/threadpool.h"
#define SWITCH_TYPE(x, ...) \
switch ((x).dtype()) { \
case bool_: { \
using T = bool; \
__VA_ARGS__; \
} break; \
case int8: { \
using T = int8_t; \
__VA_ARGS__; \
} break; \
case int16: { \
using T = int16_t; \
__VA_ARGS__; \
} break; \
case int32: { \
using T = int32_t; \
__VA_ARGS__; \
} break; \
case int64: { \
using T = int64_t; \
__VA_ARGS__; \
} break; \
case uint8: { \
using T = uint8_t; \
__VA_ARGS__; \
} break; \
case uint16: { \
using T = uint16_t; \
__VA_ARGS__; \
} break; \
case uint32: { \
using T = uint32_t; \
__VA_ARGS__; \
} break; \
case uint64: { \
using T = uint64_t; \
__VA_ARGS__; \
} break; \
case bfloat16: { \
using T = bfloat16_t; \
__VA_ARGS__; \
} break; \
case float16: { \
using T = float16_t; \
__VA_ARGS__; \
} break; \
case float32: { \
using T = float; \
__VA_ARGS__; \
} break; \
case complex64: { \
using T = complex64_t; \
__VA_ARGS__; \
} break; \
}
constexpr const size_t PACKET_SIZE = 262144;
constexpr const int CONN_ATTEMPTS = 5;
constexpr const int CONN_WAIT = 1000;
using json = nlohmann::json;
@ -30,46 +93,8 @@ void sum_inplace(const T* input, T* output, size_t N) {
}
void sum_inplace(const array& input, array& output) {
switch (input.dtype()) {
case bool_:
return sum_inplace(input.data<bool>(), output.data<bool>(), input.size());
case int8:
return sum_inplace(
input.data<int8_t>(), output.data<int8_t>(), input.size());
case uint8:
return sum_inplace(
input.data<uint8_t>(), output.data<uint8_t>(), input.size());
case int16:
return sum_inplace(
input.data<int16_t>(), output.data<int16_t>(), input.size());
case uint16:
return sum_inplace(
input.data<uint16_t>(), output.data<uint16_t>(), input.size());
case int32:
return sum_inplace(
input.data<int32_t>(), output.data<int32_t>(), input.size());
case uint32:
return sum_inplace(
input.data<uint32_t>(), output.data<uint32_t>(), input.size());
case int64:
return sum_inplace(
input.data<int64_t>(), output.data<int64_t>(), input.size());
case uint64:
return sum_inplace(
input.data<uint64_t>(), output.data<uint64_t>(), input.size());
case float16:
return sum_inplace(
input.data<float16_t>(), output.data<float16_t>(), input.size());
case bfloat16:
return sum_inplace(
input.data<bfloat16_t>(), output.data<bfloat16_t>(), input.size());
case float32:
return sum_inplace(
input.data<float>(), output.data<float>(), input.size());
case complex64:
return sum_inplace(
input.data<complex64_t>(), output.data<complex64_t>(), input.size());
}
SWITCH_TYPE(
input, sum_inplace(input.data<T>(), output.data<T>(), input.size()));
}
array ensure_row_contiguous(const array& arr) {
@ -95,7 +120,7 @@ address_t parse_address(std::string ip, std::string port) {
struct addrinfo hints, *res;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_socktype = SOCK_STREAM;
int status = getaddrinfo(ip.c_str(), port.c_str(), &hints, &res);
if (status != 0) {
@ -134,30 +159,118 @@ std::vector<address_t> load_peers() {
struct GroupImpl {
GroupImpl(std::vector<address_t> peers, int rank, bool global)
: peers_(std::move(peers)), rank_(rank), global_(global) {
if (rank_ > 0 && rank_ >= peers_.size()) {
: rank_(rank), global_(global), pool_(4), sockets_(peers.size(), -1) {
if (rank_ > 0 && rank_ >= peers.size()) {
throw std::runtime_error(
"Rank cannot be larger than the size of the group");
}
if (global_ && rank_ < peers_.size()) {
socket_fd_ = socket(AF_INET, SOCK_DGRAM, 0);
if (socket_fd_ < 0) {
int success;
// If we are expecting anyone to connect to us
if (rank_ < peers.size() - 1) {
// Create the socket to wait for connections from the peers
int sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) {
std::ostringstream msg;
msg << "Couldn't create socket (error: " << errno << ")";
throw std::runtime_error(msg.str());
}
int success =
bind(socket_fd_, peers_[rank_].sockaddr(), peers_[rank_].len);
// Make sure we can launch immediately after shutdown by setting the
// reuseaddr option so that we don't get address already in use errors
int enable = 1;
success =
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int));
if (success < 0) {
shutdown(sock, 2);
close(sock);
std::ostringstream msg;
msg << "Couldn't enable reuseaddr (rank: " << rank_
<< " error: " << errno << ")";
throw std::runtime_error(msg.str());
}
success =
setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &enable, sizeof(int));
if (success < 0) {
shutdown(sock, 2);
close(sock);
std::ostringstream msg;
msg << "Couldn't enable reuseport (rank: " << rank_
<< " error: " << errno << ")";
throw std::runtime_error(msg.str());
}
// Bind it to the port
success = bind(sock, peers[rank_].sockaddr(), peers[rank_].len);
if (success < 0) {
shutdown(sock, 2);
close(sock);
std::ostringstream msg;
msg << "Couldn't bind socket (rank: " << rank_ << " error: " << errno
<< ")";
throw std::runtime_error(msg.str());
}
// Wait for connections
success = listen(sock, 0);
if (success < 0) {
shutdown(sock, 2);
close(sock);
std::ostringstream msg;
msg << "Couldn't listen (error: " << errno << ")";
throw std::runtime_error(msg.str());
}
for (int i = 0; i < peers.size() - rank_ - 1; i++) {
int peer_socket = accept(sock, nullptr, nullptr);
if (peer_socket < 0) {
shutdown(sock, 2);
close(sock);
std::ostringstream msg;
msg << "Accept failed (error: " << errno << ")";
throw std::runtime_error(msg.str());
}
sockets_[peers.size() - 1 - i] = peer_socket;
}
// Close the listening socket
shutdown(sock, 2);
close(sock);
}
// Connect to the peers with smaller rank
for (int i = 0; i < rank_; i++) {
sockets_[i] = socket(AF_INET, SOCK_STREAM, 0);
if (sockets_[i] < 0) {
std::ostringstream msg;
msg << "Couldn't create socket (error: " << errno << ")";
throw std::runtime_error(msg.str());
}
for (int attempt = 0; attempt < CONN_ATTEMPTS; attempt++) {
if (attempt > 0) {
int wait = (1 << (attempt - 1)) * CONN_WAIT;
std::this_thread::sleep_for(std::chrono::milliseconds(wait));
}
success = connect(sockets_[i], peers[i].sockaddr(), peers[i].len);
if (success == 0) {
break;
}
}
if (success < 0) {
std::ostringstream msg;
msg << "Couldn't bind socket (error: " << errno << ")";
msg << "Couldn't connect (rank: " << rank_ << " to: " << i
<< " error: " << errno << ")";
throw std::runtime_error(msg.str());
}
}
}
~GroupImpl() {
if (global_) {
close(socket_fd_);
for (int sock : sockets_) {
shutdown(sock, 2);
close(sock);
}
}
}
@ -166,43 +279,92 @@ struct GroupImpl {
}
int size() {
return std::max(peers_.size(), 1ul);
return std::max(sockets_.size(), 1ul);
}
void send(const char* buf, size_t len, int dst) {
while (len > 0) {
size_t l = std::min(len, 8192ul);
ssize_t r = sendto(
socket_fd_, buf, l, 0, peers_[dst].sockaddr(), peers_[dst].len);
ssize_t r = ::send(sockets_[dst], buf, len, 0);
if (r <= 0) {
std::ostringstream msg;
msg << "Send of " << l << " bytes failed (errno: " << errno << ")";
msg << "Send of " << len << " bytes failed (errno: " << errno << ")";
throw std::runtime_error(msg.str());
}
len -= l;
buf += l;
}
}
void recv(char* buf, size_t len, int src) {
sockaddr_storage addr;
socklen_t addr_len;
while (len != 0) {
ssize_t r =
recvfrom(socket_fd_, buf, len, 0, (struct sockaddr*)&addr, &addr_len);
if (r <= 0) {
throw std::runtime_error("Recv failed");
}
buf += r;
len -= r;
}
}
void recv(char* buf, size_t len, int src) {
while (len > 0) {
ssize_t r = ::recv(sockets_[src], buf, len, 0);
if (r <= 0) {
std::ostringstream msg;
msg << "Recv of " << len << " bytes failed (errno: " << errno << ")";
throw std::runtime_error(msg.str());
}
buf += r;
len -= r;
}
}
template <typename T>
void send_recv_sum(char* buf, size_t len, int peer) {
char recv_buffer[2 * PACKET_SIZE];
char* recv_buffers[2];
recv_buffers[0] = recv_buffer;
recv_buffers[1] = recv_buffer + PACKET_SIZE;
std::future<void> sent, received;
size_t n_blocks = (len + PACKET_SIZE - 1) / PACKET_SIZE;
for (size_t b = 0; b < n_blocks; b++) {
if (b > 0) {
sent.wait();
received.wait();
}
size_t l = std::min(len - b * PACKET_SIZE, PACKET_SIZE);
if (rank_ < peer) {
sent = send_async(buf + b * PACKET_SIZE, l, peer);
received = recv_async(recv_buffers[b % 2], l, peer);
} else {
received = recv_async(recv_buffers[b % 2], l, peer);
sent = send_async(buf + b * PACKET_SIZE, l, peer);
}
if (b > 0) {
sum_inplace(
(const T*)recv_buffers[(b - 1) % 2],
(T*)(buf + (b - 1) * PACKET_SIZE),
PACKET_SIZE / sizeof(T));
}
}
sent.wait();
received.wait();
size_t l = std::min(len - (n_blocks - 1) * PACKET_SIZE, PACKET_SIZE);
sum_inplace(
(const T*)recv_buffers[(n_blocks - 1) % 2],
(T*)(buf + (n_blocks - 1) * PACKET_SIZE),
l / sizeof(T));
}
void send_recv_sum(array& out, int peer) {
SWITCH_TYPE(out, send_recv_sum<T>(out.data<char>(), out.nbytes(), peer));
}
std::future<void> send_async(const char* buf, size_t len, int dst) {
return pool_.enqueue(
[this, buf, len, dst]() { this->send(buf, len, dst); });
}
std::future<void> recv_async(char* buf, size_t len, int src) {
return pool_.enqueue(
[this, buf, len, src]() { this->recv(buf, len, src); });
}
private:
std::vector<address_t> peers_;
int rank_;
bool global_;
int socket_fd_;
ThreadPool pool_;
std::vector<int> sockets_;
};
} // namespace
@ -251,57 +413,84 @@ Stream communication_stream() {
void all_sum(Group group_, const array& input_, array& output) {
auto group = std::static_pointer_cast<GroupImpl>(group_.raw_group());
if (group->size() != 2) {
throw std::runtime_error("Only pairwise communication supported for now");
}
array input = ensure_row_contiguous(input_);
// Donation not supported
if (input.data<void>() == output.data<void>()) {
array temp(
allocator::malloc_or_wait(output.nbytes()),
output.shape(),
output.dtype());
if (group->rank() == 0) {
group->send(input.data<char>(), input.nbytes(), 1);
group->recv(temp.data<char>(), output.nbytes(), 1);
sum_inplace(temp, output);
} else {
group->recv(temp.data<char>(), output.nbytes(), 0);
group->send(input.data<char>(), input.nbytes(), 0);
sum_inplace(temp, output);
}
} else {
if (group->rank() == 0) {
group->send(input.data<char>(), input.nbytes(), 1);
group->recv(output.data<char>(), output.nbytes(), 1);
sum_inplace(input, output);
} else {
group->recv(output.data<char>(), output.nbytes(), 0);
group->send(input.data<char>(), input.nbytes(), 0);
sum_inplace(input, output);
}
int size = group->size();
int rank = group->rank();
if ((size & (size - 1)) != 0) {
throw std::runtime_error("Only powers of 2 are currently supported");
}
// If not inplace all reduce then copy the input to the output first.
if (input.data<void>() != output.data<void>()) {
std::memcpy(output.data<char>(), input.data<char>(), input.nbytes());
}
// Butterfly all reduce
for (int distance = 1; distance <= size / 2; distance *= 2) {
group->send_recv_sum(output, rank ^ distance);
}
}
void all_gather(Group group_, const array& input_, array& output) {
auto group = std::static_pointer_cast<GroupImpl>(group_.raw_group());
if (group->size() != 2) {
throw std::runtime_error("Only pairwise communication supported for now");
}
array input = ensure_row_contiguous(input_);
if (group->rank() == 0) {
group->send(input.data<char>(), input.nbytes(), 1);
group->recv(output.data<char>() + input.nbytes(), input.nbytes(), 1);
std::memcpy(output.data<char>(), input.data<char>(), input.nbytes());
} else {
group->recv(output.data<char>(), input.nbytes(), 0);
group->send(input.data<char>(), input.nbytes(), 0);
std::memcpy(
output.data<char>() + input.nbytes(),
input.data<char>(),
input.nbytes());
std::future<void> sent;
std::future<void> received;
int rank = group->rank();
int size = group->size();
if ((size & (size - 1)) != 0) {
throw std::runtime_error("Only powers of 2 are currently supported");
}
// Butterfly all gather
int peer = rank ^ 1;
if (peer < rank) {
received = group->recv_async(
output.data<char>() + peer * input.nbytes(), input.nbytes(), peer);
sent = group->send_async(input.data<char>(), input.nbytes(), peer);
} else {
sent = group->send_async(input.data<char>(), input.nbytes(), peer);
received = group->recv_async(
output.data<char>() + peer * input.nbytes(), input.nbytes(), peer);
}
std::memcpy(
output.data<char>() + rank * input.nbytes(),
input.data<char>(),
input.nbytes());
for (int distance = 2; distance <= size / 2; distance *= 2) {
sent.wait();
received.wait();
int peer = rank ^ distance;
int their_offset = peer & ~(distance - 1);
int our_offset = rank & ~(distance - 1);
if (peer < rank) {
received = group->recv_async(
output.data<char>() + their_offset * input.nbytes(),
distance * input.nbytes(),
peer);
sent = group->send_async(
output.data<char>() + our_offset * input.nbytes(),
distance * input.nbytes(),
peer);
} else {
sent = group->send_async(
output.data<char>() + our_offset * input.nbytes(),
distance * input.nbytes(),
peer);
received = group->recv_async(
output.data<char>() + their_offset * input.nbytes(),
distance * input.nbytes(),
peer);
}
}
sent.wait();
received.wait();
}
void send(Group group_, const array& input_, int dst) {