Add CUDA sdpa vector (#2468)

This commit is contained in:
Jagrit Digani 2025-08-06 21:40:26 -07:00 committed by GitHub
parent f2adb5638d
commit a9bdd67baa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 782 additions and 12 deletions

View File

@ -39,6 +39,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu

View File

@ -6,17 +6,6 @@
namespace mlx::core {
bool fast::ScaledDotProductAttention::use_fallback(
const array& q,
const array& k,
const array& v,
bool has_mask,
bool has_arr_mask,
bool do_causal,
Stream s) {
return true;
}
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
@ -53,7 +42,6 @@ NO_GPU_MULTI(Eig)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(CustomKernel)
} // namespace fast

View File

@ -0,0 +1,781 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/config.h"
#include "mlx/backend/cuda/device/utils.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/transforms_impl.h"
#include <nvtx3/nvtx3.hpp>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
#define PRAGMA_LOOP_UNROLL #pragma unroll
struct AttnParams {
int B;
int H;
int D;
int qL;
int kL;
int gqa_factor;
float scale;
int64_t Q_strides[3];
int64_t K_strides[3];
int64_t V_strides[3];
int64_t O_strides[3];
};
template <typename T, bool do_causal, int D>
__global__ void kernel_sdpav_1pass(
const T* Q,
const T* K,
const T* V,
T* O,
__grid_constant__ const AttnParams params) {
constexpr int BN = 32;
constexpr int BD = 32;
constexpr int v_per_thread = D / BD;
const int inner_k_stride = BN * int(params.K_strides[2]);
const int inner_v_stride = BN * int(params.V_strides[2]);
typedef float U;
U q[v_per_thread];
U k[v_per_thread];
U o[v_per_thread];
__shared__ U outputs[BN][BD + 1];
__shared__ U max_scores[BN];
__shared__ U sum_exp_scores[BN];
const U scale_log2 = params.scale * 1.44269504089f;
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<32>(block);
const int lane_idx = warp.thread_rank();
const int warp_idx = warp.meta_group_rank();
// Adjust to thread block and thread
const int batch_idx = blockIdx.z;
const int head_idx = blockIdx.x;
const int kv_head_idx = head_idx / params.gqa_factor;
const int q_seq_idx = blockIdx.y;
const int kv_seq_idx = warp_idx;
Q += batch_idx * params.Q_strides[0] + // Batch
head_idx * params.Q_strides[1] + // Head
q_seq_idx * params.Q_strides[2]; // Sequence
K += batch_idx * params.K_strides[0] + // Batch
kv_head_idx * params.K_strides[1] + // Head
kv_seq_idx * params.K_strides[2]; // Sequence
V += batch_idx * params.V_strides[0] + // Batch
kv_head_idx * params.V_strides[1] + // Head
kv_seq_idx * params.V_strides[2]; // Sequence
O += batch_idx * params.O_strides[0] + // Batch
head_idx * params.O_strides[1] + // Head
q_seq_idx * params.O_strides[2]; // Sequence
// Read the query and 0 the output accumulator
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
q[i] = scale_log2 * static_cast<U>(Q[v_per_thread * lane_idx + i]);
}
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
o[i] = 0.f;
}
U max_score = -INFINITY;
U sum_exp_score = 0.f;
// For each key
for (int i = kv_seq_idx; i < params.kL; i += BN) {
bool use_key = true;
if constexpr (do_causal) {
use_key = i <= (params.kL - params.qL + q_seq_idx);
}
if (use_key) {
// Read the key
PRAGMA_LOOP_UNROLL
for (int j = 0; j < v_per_thread; j++) {
k[j] = K[v_per_thread * lane_idx + j];
}
// Compute the i-th score
U score = 0.f;
PRAGMA_LOOP_UNROLL
for (int j = 0; j < v_per_thread; j++) {
score += q[j] * k[j];
}
// Warp sum
score = cg::reduce(warp, score, cg::plus<U>());
// Update the accumulators
U new_max = max(max_score, score);
U factor = exp2f(max_score - new_max);
U exp_score = exp2f(score - new_max);
max_score = new_max;
sum_exp_score = sum_exp_score * factor + exp_score;
// Update the output accumulator
PRAGMA_LOOP_UNROLL
for (int j = 0; j < v_per_thread; j++) {
o[j] = o[j] * factor +
exp_score * static_cast<U>(V[v_per_thread * lane_idx + j]);
}
}
// Move the pointers to the next kv
K += inner_k_stride;
V += inner_v_stride;
}
if (lane_idx == 0) {
max_scores[warp_idx] = max_score;
sum_exp_scores[warp_idx] = sum_exp_score;
}
block.sync();
max_score = max_scores[lane_idx];
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
U factor = exp2f(max_score - new_max);
sum_exp_score =
cg::reduce(warp, sum_exp_scores[lane_idx] * factor, cg::plus<U>());
sum_exp_score = __frcp_rn(sum_exp_score);
// Now we need to aggregate all the outputs
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
outputs[lane_idx][warp_idx] = o[i];
block.sync();
U ot = outputs[warp_idx][lane_idx] * factor;
o[i] = cg::reduce(warp, ot, cg::plus<U>()) * sum_exp_score;
block.sync();
}
// And write the output
if (lane_idx == 0) {
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
O[v_per_thread * warp_idx + i] = static_cast<T>(o[i]);
}
}
}
template <typename T, bool do_causal, int D>
__global__ void kernel_sdpav_2pass_1(
const T* Q,
const T* K,
const T* V,
float* partials,
float* sums,
float* maxs,
__grid_constant__ const AttnParams params) {
constexpr int BN = 8;
constexpr int BD = 32;
constexpr int blocks = 32;
constexpr int v_per_thread = D / BD;
const int inner_k_stride = blocks * BN * int(params.K_strides[2]);
const int inner_v_stride = blocks * BN * int(params.V_strides[2]);
typedef float U;
U q[v_per_thread];
U k[v_per_thread];
U o[v_per_thread];
__shared__ U outputs[BN][BD + 1];
__shared__ U max_scores[BN];
__shared__ U sum_exp_scores[BN];
const U scale_log2 = params.scale * 1.44269504089f;
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<32>(block);
const int lane_idx = warp.thread_rank();
const int warp_idx = warp.meta_group_rank();
// Adjust to thread block and thread
const int batch_idx = blockIdx.z / blocks;
const int block_idx = blockIdx.z % blocks;
const int head_idx = blockIdx.x;
const int kv_head_idx = head_idx / params.gqa_factor;
const int q_seq_idx = blockIdx.y;
const int kv_seq_idx = block_idx * BN + warp_idx;
Q += batch_idx * params.Q_strides[0] + // Batch
head_idx * params.Q_strides[1] + // Head
q_seq_idx * params.Q_strides[2]; // Sequence
K += batch_idx * params.K_strides[0] + // Batch
kv_head_idx * params.K_strides[1] + // Head
kv_seq_idx * params.K_strides[2]; // Sequence
V += batch_idx * params.V_strides[0] + // Batch
kv_head_idx * params.V_strides[1] + // Head
kv_seq_idx * params.V_strides[2]; // Sequence
const int p_stride_s = blocks;
const int p_stride_h = params.qL * p_stride_s;
const int p_stride_b = params.H * p_stride_h;
const int p_offset = batch_idx * p_stride_b + // Batch
head_idx * p_stride_h + // Head
q_seq_idx * p_stride_s + // Sequence
block_idx; // Block
partials += p_offset * D;
sums += p_offset;
maxs += p_offset;
// Read the query and 0 the output accumulator
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
q[i] = scale_log2 * static_cast<U>(Q[v_per_thread * lane_idx + i]);
}
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
o[i] = 0.f;
}
U max_score = -1e9;
U sum_exp_score = 0.f;
// For each key
for (int i = kv_seq_idx; i < params.kL; i += blocks * BN) {
bool use_key = true;
if constexpr (do_causal) {
use_key = i <= (params.kL - params.qL + q_seq_idx);
}
if (use_key) {
// Read the key
PRAGMA_LOOP_UNROLL
for (int j = 0; j < v_per_thread; j++) {
k[j] = K[v_per_thread * lane_idx + j];
}
// Compute the i-th score
U score = 0.f;
PRAGMA_LOOP_UNROLL
for (int j = 0; j < v_per_thread; j++) {
score += q[j] * k[j];
}
// Warp sum
score = cg::reduce(warp, score, cg::plus<U>());
// Update the accumulators
U new_max = max(max_score, score);
U factor = exp2f(max_score - new_max);
U exp_score = exp2f(score - new_max);
max_score = new_max;
sum_exp_score = sum_exp_score * factor + exp_score;
// Update the output accumulator
PRAGMA_LOOP_UNROLL
for (int j = 0; j < v_per_thread; j++) {
o[j] = o[j] * factor +
exp_score * static_cast<U>(V[v_per_thread * lane_idx + j]);
}
}
// Move the pointers to the next kv
K += inner_k_stride;
V += inner_v_stride;
}
if (lane_idx == 0) {
max_scores[warp_idx] = max_score;
sum_exp_scores[warp_idx] = sum_exp_score;
}
block.sync();
max_score = (lane_idx < BN) ? max_scores[lane_idx] : -1e9;
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
U factor = exp2f(max_score - new_max);
sum_exp_score = (lane_idx < BN) ? sum_exp_scores[lane_idx] : 0.f;
sum_exp_score = cg::reduce(warp, sum_exp_score * factor, cg::plus<U>());
// Write the sum and new max
if (warp_idx == 0) {
sums[0] = sum_exp_score;
maxs[0] = new_max;
}
// Now we need to aggregate all the outputs
auto ff = exp2f(max_scores[warp_idx] - new_max);
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
outputs[warp_idx][lane_idx] = o[i] * ff;
block.sync();
if (warp_idx == 0) {
U ot = outputs[0][lane_idx];
PRAGMA_LOOP_UNROLL
for (int j = 1; j < BN; j++) {
ot += outputs[j][lane_idx];
warp.sync();
}
o[i] = ot;
}
block.sync();
}
if (warp_idx == 0) {
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
partials[v_per_thread * lane_idx + i] = o[i];
}
}
}
template <typename T, bool do_causal, int D>
__global__ void kernel_sdpav_2pass_2(
const float* partials,
const float* sums,
const float* maxs,
T* O,
__grid_constant__ const AttnParams params) {
constexpr int BN = 32;
constexpr int BD = 32;
constexpr int blocks = 32;
constexpr int v_per_thread = D / BD;
typedef float U;
U o[v_per_thread];
__shared__ U outputs[BN][BD + 1];
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<32>(block);
const int lane_idx = warp.thread_rank();
const int warp_idx = warp.meta_group_rank();
// Adjust to thread block and thread
const int batch_idx = blockIdx.z;
const int head_idx = blockIdx.x;
const int q_seq_idx = blockIdx.y;
const int p_stride_s = blocks;
const int p_stride_h = params.qL * p_stride_s;
const int p_stride_b = params.H * p_stride_h;
const int p_offset = batch_idx * p_stride_b + // Batch
head_idx * p_stride_h + // Head
q_seq_idx * p_stride_s; // Sequence
partials += p_offset * D + warp_idx * D;
sums += p_offset;
maxs += p_offset;
O += batch_idx * params.O_strides[0] + // Batch
head_idx * params.O_strides[1] + // Head
q_seq_idx * params.O_strides[2]; // Sequence
U max_score = maxs[lane_idx];
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
U factor = exp2f(max_score - new_max);
U sum_exp_score = cg::reduce(warp, sums[lane_idx] * factor, cg::plus<U>());
sum_exp_score = __frcp_rn(sum_exp_score);
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
o[i] = partials[v_per_thread * lane_idx + i];
}
// Now we need to aggregate all the outputs
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
outputs[lane_idx][warp_idx] = o[i];
block.sync();
U ot = outputs[warp_idx][lane_idx] * factor;
o[i] = cg::reduce(warp, ot, cg::plus<U>()) * sum_exp_score;
block.sync();
}
// And write the output
if (lane_idx == 0) {
PRAGMA_LOOP_UNROLL
for (int i = 0; i < v_per_thread; i++) {
O[v_per_thread * warp_idx + i] = static_cast<T>(o[i]);
}
}
}
} // namespace cu
namespace {
template <typename F>
void dispatch_headdim(int n, F&& f) {
switch (n) {
case 64:
f(std::integral_constant<int, 64>{});
break;
case 96:
f(std::integral_constant<int, 96>{});
break;
case 128:
f(std::integral_constant<int, 128>{});
break;
}
}
void sdpa_vector_1pass_fallback(
const Stream& s,
cu::CommandEncoder& encoder,
const array& q,
const array& k,
const array& v,
const float scale,
array& o,
bool do_causal_ = false) {
encoder.set_input_array(q);
encoder.set_input_array(k);
encoder.set_input_array(v);
encoder.set_output_array(o);
cu::AttnParams params{
/* int B = */ q.shape(0),
/* int H = */ q.shape(1),
/* int D = */ q.shape(3),
/* int qL = */ q.shape(2),
/* int kL = */ k.shape(2),
/* int gqa_factor = */ q.shape(1) / k.shape(1),
/* float scale = */ scale,
/* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
/* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
/* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
/* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)}};
dim3 grid_dim(params.H, params.qL, params.B);
dim3 block_dim(1024, 1, 1);
dispatch_float_types(o.dtype(), "kernel_sdpav_1pass", [&](auto type_tag) {
dispatch_bool(do_causal_, [&](auto do_causal) {
dispatch_headdim(params.D, [&](auto headdim) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel =
cu::kernel_sdpav_1pass<DataType, do_causal.value, headdim.value>;
encoder.add_kernel_node(
kernel,
grid_dim,
block_dim,
0,
q.data<DataType>(),
k.data<DataType>(),
v.data<DataType>(),
o.data<DataType>(),
params);
});
});
});
}
void sdpa_vector_2pass_fallback(
const Stream& s,
cu::CommandEncoder& encoder,
const array& q,
const array& k,
const array& v,
const float scale,
array& o,
bool do_causal_ = false) {
cu::AttnParams params{
/* int B = */ q.shape(0),
/* int H = */ q.shape(1),
/* int D = */ q.shape(3),
/* int qL = */ q.shape(2),
/* int kL = */ k.shape(2),
/* int gqa_factor = */ q.shape(1) / k.shape(1),
/* float scale = */ scale,
/* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
/* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
/* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
/* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)}};
// Allocate the intermediates
int blocks = 32;
Shape intermediate_shape;
intermediate_shape.reserve(o.ndim() + 1);
intermediate_shape.insert(
intermediate_shape.end(), o.shape().begin(), o.shape().end() - 1);
intermediate_shape.push_back(blocks);
intermediate_shape.push_back(o.shape().back());
array intermediate(intermediate_shape, float32, nullptr, {});
intermediate_shape.pop_back();
array sums(intermediate_shape, float32, nullptr, {});
array maxs(std::move(intermediate_shape), float32, nullptr, {});
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
sums.set_data(allocator::malloc(sums.nbytes()));
maxs.set_data(allocator::malloc(maxs.nbytes()));
encoder.add_temporary(intermediate);
encoder.add_temporary(sums);
encoder.add_temporary(maxs);
dispatch_float_types(o.dtype(), "kernel_sdpav_2pass", [&](auto type_tag) {
dispatch_bool(do_causal_, [&](auto do_causal) {
dispatch_headdim(params.D, [&](auto headdim) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
{
auto kernel = cu::
kernel_sdpav_2pass_1<DataType, do_causal.value, headdim.value>;
encoder.set_input_array(q);
encoder.set_input_array(k);
encoder.set_input_array(v);
encoder.set_output_array(intermediate);
encoder.set_output_array(sums);
encoder.set_output_array(maxs);
dim3 grid_dim(params.H, params.qL, params.B * 32);
dim3 block_dim(8 * 32, 1, 1);
encoder.add_kernel_node(
kernel,
grid_dim,
block_dim,
0,
q.data<DataType>(),
k.data<DataType>(),
v.data<DataType>(),
intermediate.data<float>(),
sums.data<float>(),
maxs.data<float>(),
params);
}
{
auto kernel = cu::
kernel_sdpav_2pass_2<DataType, do_causal.value, headdim.value>;
encoder.set_input_array(intermediate);
encoder.set_input_array(sums);
encoder.set_input_array(maxs);
encoder.set_output_array(o);
dim3 grid_dim(params.H, params.qL, params.B);
dim3 block_dim(1024, 1, 1);
encoder.add_kernel_node(
kernel,
grid_dim,
block_dim,
0,
intermediate.data<float>(),
sums.data<float>(),
maxs.data<float>(),
o.data<DataType>(),
params);
}
});
});
});
}
void sdpa_vector_fallback(
const Stream& s,
cu::CommandEncoder& encoder,
const array& q,
const array& k,
const array& v,
const float scale,
array& o,
bool do_causal_ = false) {
int kL = k.shape(2);
if (kL > 1024) {
return sdpa_vector_2pass_fallback(
s, encoder, q, k, v, scale, o, do_causal_);
} else {
return sdpa_vector_1pass_fallback(
s, encoder, q, k, v, scale, o, do_causal_);
}
}
} // namespace
namespace fast {
bool ScaledDotProductAttention::use_fallback(
const array& q,
const array& k,
const array& v,
bool has_mask,
bool has_arr_mask,
bool do_causal,
Stream s) {
if (detail::in_grad_tracing()) {
return true;
}
if (s.device == Device::cpu) {
return true;
}
const int value_head_dim = v.shape(-1);
const int query_head_dim = q.shape(-1);
const int query_sequence_length = q.shape(2);
const int key_sequence_length = k.shape(2);
const bool sdpa_supported_head_dim = query_head_dim == value_head_dim &&
(query_head_dim == 64 || query_head_dim == 96 || query_head_dim == 128);
const bool supported_vector_config =
sdpa_supported_head_dim && query_sequence_length < 4;
const bool supported_config = supported_vector_config;
return has_arr_mask || !supported_config;
}
void ScaledDotProductAttention::eval_gpu(
const std::vector<array>& inputs,
array& out) {
nvtx3::scoped_range r("ScaledDotProductAttention::eval_gpu");
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
auto& q_pre = inputs[0];
auto& k_pre = inputs[1];
auto& v_pre = inputs[2];
auto& o = out;
std::vector<array> copies;
// Define some copy functions to ensure the layout of the inputs is as
// expected.
copies.reserve(3);
auto copy_unless = [&copies, &s](
auto predicate, const array& arr) -> const array& {
if (!predicate(arr)) {
array arr_copy = contiguous_copy_gpu(arr, s);
copies.push_back(std::move(arr_copy));
return copies.back();
} else {
return arr;
}
};
// We are in vector mode ie single query
if (q_pre.shape(2) < 4) {
auto q_copy_unless = [](const array& arr) {
if (arr.flags().row_contiguous) {
return true;
}
auto& strides = arr.strides();
auto& shape = arr.shape();
if (shape[0] == 1 || shape[1] == 1) {
// If either the batch or head dimension is a singleton, the other can
// be transposed with the sequence dimension
auto bidx = shape[0] == 1 ? 1 : 0;
return (strides[3] == 1) && (strides[2] == shape[3] * shape[bidx]) &&
(strides[bidx] == shape[3]);
}
return false;
};
auto kv_copy_unless = [](const array& arr) {
// keys and values should be copied if:
// - the last dimension is not contiguous
// - the batch and head dim are not contiguous
auto& strides = arr.strides();
auto& shape = arr.shape();
if (strides.back() != 1) {
return false;
}
if (shape[0] == 1 || shape[1] == 1) {
return true;
}
return (strides[0] == strides[1] * shape[1]);
};
const auto& q = copy_unless(q_copy_unless, q_pre);
const auto& k = copy_unless(kv_copy_unless, k_pre);
const auto& v = copy_unless(kv_copy_unless, v_pre);
for (const auto& cp : copies) {
encoder.add_temporary(cp);
}
// Donate the query if possible
if (q.is_donatable() && q.flags().row_contiguous && q.size() == o.size()) {
o.copy_shared_buffer(q);
} else {
int64_t str_oD = 1;
int64_t str_oH = o.shape(3);
int64_t str_oL = o.shape(1) * str_oH;
int64_t str_oB = o.shape(2) * str_oL;
size_t data_size = o.shape(0) * str_oB;
array::Flags flags{
/* bool contiguous = */ 1,
/* bool row_contiguous = */ o.shape(2) == 1,
/* bool col_contiguous = */ 0,
};
o.set_data(
allocator::malloc(o.nbytes()),
data_size,
{str_oB, str_oH, str_oL, str_oD},
flags);
}
return sdpa_vector_fallback(s, encoder, q, k, v, scale_, o, do_causal_);
}
// Full attention mode should never reach here
else {
throw std::runtime_error("Doesn't support matrix yet.");
}
}
} // namespace fast
} // namespace mlx::core