mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-02 00:36:49 +08:00
[CUDA] More sizes for gemv (#2429)
* route more to gemv * route more sizes to custom gemv
This commit is contained in:
parent
1588659062
commit
ab0e608862
@ -11,7 +11,6 @@ namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
static constexpr int n_per_thread = 4;
|
||||
static constexpr int rows_per_block = 8;
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
@ -74,8 +73,23 @@ __global__ void gemv_batched(
|
||||
}
|
||||
|
||||
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
|
||||
return K % (WARP_SIZE * n_per_thread) == 0 &&
|
||||
((M == 1 && b_transposed) || (N == 1 && !a_transposed));
|
||||
bool is_multiple = K % 32 == 0 || K % 64 == 0 || K % 128 == 0;
|
||||
return is_multiple && ((M == 1 && b_transposed) || (N == 1 && !a_transposed));
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_n_per_thread(int n_per_thread, F&& f) {
|
||||
switch (n_per_thread) {
|
||||
case 1:
|
||||
f(std::integral_constant<int, 1>{});
|
||||
break;
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void gemv(
|
||||
@ -114,33 +128,39 @@ void gemv(
|
||||
rows = M;
|
||||
}
|
||||
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
|
||||
if (batch_count == 1) {
|
||||
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks_x,
|
||||
block_dims,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols);
|
||||
} else {
|
||||
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
dim3{num_blocks_x, batch_count},
|
||||
block_dims,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols,
|
||||
const_param(batch_shape),
|
||||
mat_strides,
|
||||
vec_strides,
|
||||
batch_shape.size());
|
||||
int n_per_t = 4;
|
||||
while (K % (n_per_t * WARP_SIZE) != 0) {
|
||||
n_per_t >>= 1;
|
||||
}
|
||||
dispatch_n_per_thread(n_per_t, [&](auto n_per_thread) {
|
||||
if (batch_count == 1) {
|
||||
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread()>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks_x,
|
||||
block_dims,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols);
|
||||
} else {
|
||||
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread()>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
dim3{num_blocks_x, batch_count},
|
||||
block_dims,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols,
|
||||
const_param(batch_shape),
|
||||
mat_strides,
|
||||
vec_strides,
|
||||
batch_shape.size());
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user