mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-01 04:24:36 +08:00
Initial implementation
This commit is contained in:
@@ -132,8 +132,7 @@ target_link_libraries(mlx PRIVATE CUDA::cublasLt)
|
||||
# Use NVRTC and driver APIs.
|
||||
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
||||
|
||||
# Download cuDNN-frontend, which is used to find cuDNN. We are not using the
|
||||
# frontend APIs for now, link with "cudnn_frontend" if needed.
|
||||
# Use the frontend APIs of cuDNN.
|
||||
FetchContent_Declare(
|
||||
cudnn
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
|
||||
@@ -145,6 +144,7 @@ set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
|
||||
FetchContent_MakeAvailable(cudnn)
|
||||
target_link_libraries(mlx PRIVATE cudnn_frontend)
|
||||
# Link with the actual cuDNN libraries.
|
||||
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
|
||||
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
|
@@ -1,14 +1,35 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
// cudnn_frontend.h redefines this macro.
|
||||
#undef CHECK_CUDA_ERROR
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
// cudnn_frontend.h redefines this macro.
|
||||
#undef CHECK_CUDNN_ERROR
|
||||
#undef CHECK_CUDNN_FRONTEND_ERROR
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
#define CHECK_CUDNNS_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
namespace cu {
|
||||
|
||||
using namespace cudnn_frontend;
|
||||
|
||||
#define CHECK_CUDNN_FRONTEND_ERROR(cmd) \
|
||||
if (cmd.is_bad()) { \
|
||||
throw std::runtime_error(fmt::format("{} failed.", #cmd)); \
|
||||
}
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
if (err != CUDNN_STATUS_SUCCESS) {
|
||||
@@ -17,6 +38,237 @@ void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
}
|
||||
}
|
||||
|
||||
auto swapaxes(const array& in, int axis1, int axis2) {
|
||||
std::vector<int> axes(in.ndim());
|
||||
std::iota(axes.begin(), axes.end(), 0);
|
||||
std::swap(axes[axis1], axes[axis2]);
|
||||
std::vector<int64_t> shape(axes.size());
|
||||
std::vector<int64_t> strides(in.ndim());
|
||||
for (size_t ax = 0; ax < axes.size(); ++ax) {
|
||||
shape[ax] = in.shape()[axes[ax]];
|
||||
strides[ax] = in.strides()[axes[ax]];
|
||||
}
|
||||
return std::make_tuple(shape, strides);
|
||||
}
|
||||
|
||||
class Convolution {
|
||||
public:
|
||||
Convolution(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
const std::vector<int64_t>& input_shape,
|
||||
const std::vector<int64_t>& input_strides,
|
||||
const std::vector<int64_t>& filter_shape,
|
||||
const std::vector<int64_t>& filter_strides,
|
||||
const std::vector<int64_t>& output_shape,
|
||||
const std::vector<int64_t>& output_strides,
|
||||
const std::vector<int64_t>& stride,
|
||||
const std::vector<int64_t>& padding,
|
||||
const std::vector<int64_t>& dilation,
|
||||
int groups)
|
||||
: handle_(device.cudnn_handle()) {
|
||||
auto cudnn_type = dtype_to_cudnn_type(dtype);
|
||||
bool is_half = dtype == float16 || dtype == bfloat16;
|
||||
|
||||
graph_.set_io_data_type(cudnn_type)
|
||||
.set_compute_data_type(is_half ? DataType_t::FLOAT : cudnn_type);
|
||||
input_attr_ = graph_.tensor(graph::Tensor_attributes()
|
||||
.set_dim(input_shape)
|
||||
.set_stride(input_strides));
|
||||
filter_attr_ = graph_.tensor(graph::Tensor_attributes()
|
||||
.set_dim(filter_shape)
|
||||
.set_stride(filter_strides));
|
||||
|
||||
auto conv_options = graph::Conv_fprop_attributes()
|
||||
.set_padding(padding)
|
||||
.set_stride(stride)
|
||||
.set_dilation(dilation);
|
||||
output_attr_ = graph_.conv_fprop(input_attr_, filter_attr_, conv_options);
|
||||
output_attr_->set_output(true);
|
||||
|
||||
CHECK_CUDNN_FRONTEND_ERROR(graph_.validate());
|
||||
CHECK_CUDNN_FRONTEND_ERROR(graph_.build_operation_graph(handle_));
|
||||
CHECK_CUDNN_FRONTEND_ERROR(graph_.create_execution_plans({HeurMode_t::A}));
|
||||
CHECK_CUDNN_FRONTEND_ERROR(graph_.check_support(handle_));
|
||||
CHECK_CUDNN_FRONTEND_ERROR(graph_.build_plans(handle_));
|
||||
|
||||
#if 0
|
||||
int ndim = input_shape.size();
|
||||
CHECK_CUDNN_ERROR(cudnnCreateTensorDescriptor(&input_desc_));
|
||||
CHECK_CUDNN_ERROR(cudnnSetTensorNdDescriptor(
|
||||
input_desc_,
|
||||
cudnn_type,
|
||||
ndim,
|
||||
input_shape.data(),
|
||||
input_strides.data()));
|
||||
|
||||
CHECK_CUDNN_ERROR(cudnnCreateFilterDescriptor(&filter_desc_));
|
||||
CHECK_CUDNN_ERROR(cudnnSetFilterNdDescriptor(
|
||||
filter_desc_,
|
||||
cudnn_type,
|
||||
CUDNN_TENSOR_NCHW,
|
||||
ndim,
|
||||
filter_shape.data()));
|
||||
|
||||
CHECK_CUDNN_ERROR(cudnnCreateTensorDescriptor(&output_desc_));
|
||||
CHECK_CUDNN_ERROR(cudnnSetTensorNdDescriptor(
|
||||
output_desc_,
|
||||
cudnn_type,
|
||||
ndim,
|
||||
output_shape.data(),
|
||||
output_strides.data()));
|
||||
|
||||
CHECK_CUDNN_ERROR(cudnnCreateConvolutionDescriptor(&conv_desc_));
|
||||
CHECK_CUDNN_ERROR(cudnnSetConvolutionGroupCount(conv_desc_, groups));
|
||||
CHECK_CUDNN_ERROR(cudnnSetConvolutionNdDescriptor(
|
||||
conv_desc_,
|
||||
ndim - 2,
|
||||
padding.data(),
|
||||
stride.data(),
|
||||
dilation.data(),
|
||||
CUDNN_CROSS_CORRELATION,
|
||||
is_half ? CUDNN_DATA_FLOAT : cudnn_type));
|
||||
if (is_half) {
|
||||
CHECK_CUDNN_ERROR(
|
||||
cudnnSetConvolutionMathType(conv_desc_, CUDNN_TENSOR_OP_MATH));
|
||||
} else if (dtype == float32) {
|
||||
CHECK_CUDNN_ERROR(
|
||||
cudnnSetConvolutionMathType(conv_desc_, CUDNN_FMA_MATH));
|
||||
} else {
|
||||
CHECK_CUDNN_ERROR(
|
||||
cudnnSetConvolutionMathType(conv_desc_, CUDNN_DEFAULT_MATH));
|
||||
}
|
||||
|
||||
std::vector<int> expected_output_shape(ndim);
|
||||
CHECK_CUDNN_ERROR(cudnnGetConvolutionNdForwardOutputDim(
|
||||
conv_desc_,
|
||||
input_desc_,
|
||||
filter_desc_,
|
||||
ndim,
|
||||
expected_output_shape.data()));
|
||||
std::cout << "expected_output_shape: " << expected_output_shape
|
||||
<< std::endl;
|
||||
|
||||
cudnnConvolutionFwdAlgoPerf_t results[CUDNN_CONVOLUTION_FWD_ALGO_COUNT];
|
||||
int count;
|
||||
CHECK_CUDNN_ERROR(cudnnGetConvolutionForwardAlgorithm_v7(
|
||||
handle_,
|
||||
input_desc_,
|
||||
filter_desc_,
|
||||
conv_desc_,
|
||||
output_desc_,
|
||||
std::size(results),
|
||||
&count,
|
||||
results));
|
||||
for (int i = 0; i < count; ++i) {
|
||||
if (results[i].status == CUDNN_STATUS_SUCCESS) {
|
||||
algo_ = results[i].algo;
|
||||
std::cout << "Found algorithm" << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
CHECK_CUDNN_ERROR(cudnnGetConvolutionForwardWorkspaceSize(
|
||||
handle_,
|
||||
input_desc_,
|
||||
filter_desc_,
|
||||
conv_desc_,
|
||||
output_desc_,
|
||||
algo_,
|
||||
&workspace_size_));
|
||||
#endif
|
||||
}
|
||||
|
||||
~Convolution() {
|
||||
#if 0
|
||||
cudnnDestroyTensorDescriptor(input_desc_);
|
||||
cudnnDestroyFilterDescriptor(filter_desc_);
|
||||
cudnnDestroyTensorDescriptor(output_desc_);
|
||||
cudnnDestroyConvolutionDescriptor(conv_desc_);
|
||||
#endif
|
||||
}
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
const void* input,
|
||||
const void* filter,
|
||||
void* output) {
|
||||
float alpha = 1;
|
||||
float beta = 0;
|
||||
|
||||
array workspace(
|
||||
allocator::malloc(workspace_size_),
|
||||
{static_cast<int>(workspace_size_)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
|
||||
std::unordered_map<int64_t, void*> ptr_map{
|
||||
{input_attr_->get_uid(), const_cast<void*>(input)},
|
||||
{filter_attr_->get_uid(), const_cast<void*>(filter)},
|
||||
{output_attr_->get_uid(), output}};
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUDNN_ERROR(cudnnSetStream(handle_, encoder.stream()));
|
||||
CHECK_CUDNN_FRONTEND_ERROR(
|
||||
graph_.execute(handle_, ptr_map, workspace.data<void>()));
|
||||
#if 0
|
||||
CHECK_CUDNN_ERROR(cudnnConvolutionForward(
|
||||
handle_,
|
||||
&alpha,
|
||||
input_desc_,
|
||||
input,
|
||||
filter_desc_,
|
||||
filter,
|
||||
conv_desc_,
|
||||
algo_,
|
||||
workspace.data<void>(),
|
||||
workspace_size_,
|
||||
&beta,
|
||||
output_desc_,
|
||||
output));
|
||||
#endif
|
||||
}
|
||||
|
||||
private:
|
||||
DataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return DataType_t::INT8;
|
||||
case int32:
|
||||
return DataType_t::INT32;
|
||||
case uint8:
|
||||
return DataType_t::UINT8;
|
||||
case float16:
|
||||
return DataType_t::HALF;
|
||||
case bfloat16:
|
||||
return DataType_t::BFLOAT16;
|
||||
case float32:
|
||||
return DataType_t::FLOAT;
|
||||
case float64:
|
||||
return DataType_t::DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cudnnHandle_t handle_;
|
||||
cudnnTensorDescriptor_t input_desc_{nullptr};
|
||||
cudnnFilterDescriptor_t filter_desc_{nullptr};
|
||||
cudnnTensorDescriptor_t output_desc_{nullptr};
|
||||
cudnnConvolutionDescriptor_t conv_desc_{nullptr};
|
||||
cudnnConvolutionFwdAlgo_t algo_{
|
||||
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM};
|
||||
|
||||
graph::Graph graph_;
|
||||
std::shared_ptr<graph::Tensor_attributes> input_attr_;
|
||||
std::shared_ptr<graph::Tensor_attributes> filter_attr_;
|
||||
std::shared_ptr<graph::Tensor_attributes> output_attr_;
|
||||
size_t workspace_size_{0};
|
||||
};
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Convolution::eval_gpu");
|
||||
auto& s = stream();
|
||||
@@ -27,7 +279,25 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
const auto& wt = inputs[1];
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
throw std::runtime_error("NYI");
|
||||
int ndim = in.ndim();
|
||||
auto [input_shape, input_strides] = cu::swapaxes(in, 1, ndim - 1);
|
||||
auto [filter_shape, filter_strides] = cu::swapaxes(wt, 1, ndim - 1);
|
||||
auto [output_shape, output_strides] = cu::swapaxes(out, 1, ndim - 1);
|
||||
|
||||
cu::Convolution conv(
|
||||
cu::device(s.device),
|
||||
in.dtype(),
|
||||
input_shape,
|
||||
input_strides,
|
||||
filter_shape,
|
||||
filter_strides,
|
||||
output_shape,
|
||||
output_strides,
|
||||
std::vector<int64_t>(kernel_strides_.begin(), kernel_strides_.end()),
|
||||
std::vector<int64_t>(padding_lo_.begin(), padding_lo_.end()),
|
||||
std::vector<int64_t>(kernel_dilation_.begin(), kernel_dilation_.end()),
|
||||
groups_);
|
||||
conv.run(encoder, in.data<void>(), wt.data<void>(), out.data<void>());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -3688,17 +3688,7 @@ TEST_CASE("test conv1d") {
|
||||
}
|
||||
|
||||
TEST_CASE("test conv2d") {
|
||||
auto in = array(
|
||||
{0.57429284,
|
||||
-0.21628855,
|
||||
-0.18673691,
|
||||
-0.3793517,
|
||||
|
||||
0.3059678,
|
||||
-0.8137168,
|
||||
0.6168841,
|
||||
-0.26912728},
|
||||
{1, 2, 2, 2});
|
||||
array in = zeros({1, 2, 2, 3}, float32);
|
||||
|
||||
std::pair<int, int> kernel{2, 2};
|
||||
std::pair<int, int> stride{1, 1};
|
||||
@@ -3707,15 +3697,7 @@ TEST_CASE("test conv2d") {
|
||||
{
|
||||
int groups = 1;
|
||||
|
||||
auto wt = array(
|
||||
{0.3190391, -0.24937038, 1.4621079, -2.0601406, -0.3224172,
|
||||
-0.38405436, 1.1337694, -1.0998913, -0.1724282, -0.8778584,
|
||||
0.04221375, 0.58281523, -1.1006192, 1.1447237, 0.9015907,
|
||||
0.50249434, 0.90085596, -0.68372786, -0.12289023, -0.93576944,
|
||||
-0.26788807, 0.53035545, -0.69166076, -0.39675352, -0.6871727,
|
||||
-0.84520566, -0.6712461, -0.0126646, -1.1173104, 0.2344157,
|
||||
1.6598022, 0.74204415},
|
||||
{4, 2, 2, 2});
|
||||
array wt = ones({1, 2, 2, 3}, float32);
|
||||
|
||||
auto expected =
|
||||
array({1.9549234, -0.98542136, 0.2097499, 0.20991313}, {1, 1, 1, 4});
|
||||
|
Reference in New Issue
Block a user