mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00
Fix optimizer reloading from checkpoint (#1329)
* fix optimizer reloading from checkpoint * comment
This commit is contained in:
parent
d0630ffe8c
commit
ae5b5cabfd
@ -48,8 +48,28 @@ class Optimizer:
|
||||
>>> optimizer.state.keys()
|
||||
dict_keys(['step', 'learning_rate', 'weight', 'bias'])
|
||||
"""
|
||||
self._state.update(tree_map(lambda x: {}, parameters))
|
||||
tree_map(self.init_single, parameters, self._state)
|
||||
|
||||
# Iniatilize the optimizer state to match the parameter state
|
||||
def update_state(params, state):
|
||||
if isinstance(params, (list, tuple)):
|
||||
state = list(state)
|
||||
for i in range(len(state)):
|
||||
state[i] = update_state(params[i], state[i])
|
||||
if len(state) != len(params):
|
||||
state.extend(tree_map(lambda x: {}, params[len(state) :]))
|
||||
return type(params)(state)
|
||||
elif isinstance(params, dict):
|
||||
for k, v in params.items():
|
||||
if k not in state:
|
||||
state[k] = tree_map(lambda x: {}, v)
|
||||
else:
|
||||
state[k] = update_state(v, state[k])
|
||||
return state
|
||||
else:
|
||||
return state
|
||||
|
||||
update_state(parameters, self._state)
|
||||
tree_map(lambda p, s: s or self.init_single(p, s), parameters, self._state)
|
||||
self._initialized = True
|
||||
|
||||
def init_single(self, parameter: mx.array, state: dict):
|
||||
@ -104,7 +124,7 @@ class Optimizer:
|
||||
|
||||
@state.setter
|
||||
def state(self, state: dict):
|
||||
self._initialized = True
|
||||
self._initialized = False
|
||||
self._state = state
|
||||
|
||||
@property
|
||||
|
@ -10,7 +10,7 @@ import mlx.nn as nn
|
||||
import mlx.optimizers as opt
|
||||
import mlx.utils
|
||||
import mlx_tests
|
||||
from mlx.utils import tree_flatten, tree_map
|
||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||
|
||||
|
||||
def get_all_optimizers():
|
||||
@ -206,20 +206,22 @@ class TestOptimizers(mlx_tests.MLXTestCase):
|
||||
|
||||
def test_adafactor(self):
|
||||
x = mx.zeros((5, 5))
|
||||
grad = mx.ones_like(x)
|
||||
params = {"x": x}
|
||||
grad = {"x": mx.ones_like(x)}
|
||||
optimizer = opt.Adafactor()
|
||||
for _ in range(2):
|
||||
xp = optimizer.apply_gradients(grad, x)
|
||||
self.assertEqual(xp.dtype, x.dtype)
|
||||
self.assertEqual(xp.shape, x.shape)
|
||||
xp = optimizer.apply_gradients(grad, params)
|
||||
self.assertEqual(xp["x"].dtype, x.dtype)
|
||||
self.assertEqual(xp["x"].shape, x.shape)
|
||||
|
||||
x = mx.zeros((5, 5), mx.float16)
|
||||
grad = mx.ones_like(x)
|
||||
params = {"x": x}
|
||||
grad = {"x": mx.ones_like(x)}
|
||||
optimizer = opt.Adafactor()
|
||||
for _ in range(2):
|
||||
xp = optimizer.apply_gradients(grad, x)
|
||||
self.assertEqual(xp.dtype, x.dtype)
|
||||
self.assertEqual(xp.shape, x.shape)
|
||||
xp = optimizer.apply_gradients(grad, params)
|
||||
self.assertEqual(xp["x"].dtype, x.dtype)
|
||||
self.assertEqual(xp["x"].shape, x.shape)
|
||||
self.assertEqual(optimizer.state["step"], 2)
|
||||
|
||||
def test_compiled_optimizer(self):
|
||||
@ -420,6 +422,30 @@ class TestSchedulers(unittest.TestCase):
|
||||
"Gradients were not scaled correctly during clipping.",
|
||||
)
|
||||
|
||||
def test_init_from_state(self):
|
||||
class Model(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.l1 = nn.Linear(2, 2)
|
||||
self.drop = nn.Dropout(p=0.5)
|
||||
self.l2 = nn.Linear(2, 2)
|
||||
self.vals = [nn.Linear(2, 2), nn.ReLU(), nn.ReLU()]
|
||||
|
||||
model = Model()
|
||||
optimizer = opt.Adam(learning_rate=3e-4)
|
||||
optimizer.init(model.trainable_parameters())
|
||||
|
||||
# Flatten the state for serialization
|
||||
state = tree_flatten(optimizer.state)
|
||||
|
||||
# Make a new optimizer and load the state
|
||||
optimizer = opt.Adam(learning_rate=3e-4)
|
||||
optimizer.state = tree_unflatten(state)
|
||||
|
||||
# This should work without any errors
|
||||
grads = model.trainable_parameters()
|
||||
optimizer.update(model, grads)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user