Fix optimizer reloading from checkpoint (#1329)

* fix optimizer reloading from checkpoint

* comment
This commit is contained in:
Awni Hannun
2024-08-15 07:33:23 -07:00
committed by GitHub
parent d0630ffe8c
commit ae5b5cabfd
2 changed files with 58 additions and 12 deletions

View File

@@ -10,7 +10,7 @@ import mlx.nn as nn
import mlx.optimizers as opt
import mlx.utils
import mlx_tests
from mlx.utils import tree_flatten, tree_map
from mlx.utils import tree_flatten, tree_map, tree_unflatten
def get_all_optimizers():
@@ -206,20 +206,22 @@ class TestOptimizers(mlx_tests.MLXTestCase):
def test_adafactor(self):
x = mx.zeros((5, 5))
grad = mx.ones_like(x)
params = {"x": x}
grad = {"x": mx.ones_like(x)}
optimizer = opt.Adafactor()
for _ in range(2):
xp = optimizer.apply_gradients(grad, x)
self.assertEqual(xp.dtype, x.dtype)
self.assertEqual(xp.shape, x.shape)
xp = optimizer.apply_gradients(grad, params)
self.assertEqual(xp["x"].dtype, x.dtype)
self.assertEqual(xp["x"].shape, x.shape)
x = mx.zeros((5, 5), mx.float16)
grad = mx.ones_like(x)
params = {"x": x}
grad = {"x": mx.ones_like(x)}
optimizer = opt.Adafactor()
for _ in range(2):
xp = optimizer.apply_gradients(grad, x)
self.assertEqual(xp.dtype, x.dtype)
self.assertEqual(xp.shape, x.shape)
xp = optimizer.apply_gradients(grad, params)
self.assertEqual(xp["x"].dtype, x.dtype)
self.assertEqual(xp["x"].shape, x.shape)
self.assertEqual(optimizer.state["step"], 2)
def test_compiled_optimizer(self):
@@ -420,6 +422,30 @@ class TestSchedulers(unittest.TestCase):
"Gradients were not scaled correctly during clipping.",
)
def test_init_from_state(self):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Linear(2, 2)
self.drop = nn.Dropout(p=0.5)
self.l2 = nn.Linear(2, 2)
self.vals = [nn.Linear(2, 2), nn.ReLU(), nn.ReLU()]
model = Model()
optimizer = opt.Adam(learning_rate=3e-4)
optimizer.init(model.trainable_parameters())
# Flatten the state for serialization
state = tree_flatten(optimizer.state)
# Make a new optimizer and load the state
optimizer = opt.Adam(learning_rate=3e-4)
optimizer.state = tree_unflatten(state)
# This should work without any errors
grads = model.trainable_parameters()
optimizer.update(model, grads)
if __name__ == "__main__":
unittest.main()