mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Fix a couple of slicing bugs (#1827)
* fix a few bugs * fix conv grad * speedup test * comment
This commit is contained in:
@@ -1229,58 +1229,45 @@ std::vector<array> Convolution::vjp(
|
||||
in, wt, cotan, kernel_strides_, padding_, stream());
|
||||
grads.push_back(grad);
|
||||
} else {
|
||||
if (flip_) {
|
||||
auto padding = padding_;
|
||||
for (int i = 0; i < padding.size(); i++) {
|
||||
int wt_size = 1 + kernel_dilation_[i] * (wt.shape(1 + i) - 1);
|
||||
padding[i] = wt_size - padding_[i] - 1;
|
||||
}
|
||||
std::vector<int> padding_lo = padding_;
|
||||
std::vector<int> padding_hi = padding_;
|
||||
|
||||
auto cotan_trans = group_transpose(cotan, -1, 0, -1);
|
||||
auto in_trans = swapaxes(in, 0, -1, stream());
|
||||
|
||||
auto grad_trans = conv_general(
|
||||
/* const array& input = */ cotan_trans,
|
||||
/* const array& weight = */ in_trans,
|
||||
/* std::vector<int> stride = */ kernel_dilation_,
|
||||
/* std::vector<int> padding_lo = */ padding,
|
||||
/* std::vector<int> padding_hi = */ padding,
|
||||
/* std::vector<int> kernel_dilation = */ input_dilation_,
|
||||
/* std::vector<int> input_dilation = */ kernel_strides_,
|
||||
/* int groups = */ groups_,
|
||||
/* bool flip = */ false,
|
||||
stream());
|
||||
if (groups_ > 1) {
|
||||
grads.push_back(group_transpose(grad_trans, -1, 0, -2));
|
||||
} else {
|
||||
grads.push_back(grad_trans);
|
||||
}
|
||||
} else {
|
||||
std::vector<int> padding_lo = padding_;
|
||||
std::vector<int> padding_hi = padding_;
|
||||
|
||||
for (int i = 0; i < padding_hi.size(); ++i) {
|
||||
int in_size = 1 + input_dilation_[i] * (in.shape(1 + i) - 1);
|
||||
int out_size = 1 + kernel_strides_[i] * (cotan.shape(1 + i) - 1);
|
||||
int wt_size = 1 + kernel_dilation_[i] * (wt.shape(1 + i) - 1);
|
||||
padding_hi[i] = out_size - in_size + wt_size - padding_[i] - 1;
|
||||
}
|
||||
auto cotan_trans = swapaxes(cotan, 0, -1, stream());
|
||||
auto in_trans = group_transpose(in, -1, 0, -1);
|
||||
|
||||
auto grad_trans = conv_general(
|
||||
/* const array& input = */ in_trans,
|
||||
/* const array& weight = */ cotan_trans,
|
||||
/* std::vector<int> stride = */ kernel_dilation_,
|
||||
/* std::vector<int> padding_lo = */ padding_lo,
|
||||
/* std::vector<int> padding_hi = */ padding_hi,
|
||||
/* std::vector<int> kernel_dilation = */ kernel_strides_,
|
||||
/* std::vector<int> input_dilation = */ input_dilation_,
|
||||
/* int groups = */ groups_,
|
||||
/* bool flip = */ false,
|
||||
stream());
|
||||
grads.push_back(swapaxes(grad_trans, 0, -1, stream()));
|
||||
for (int i = 0; i < padding_hi.size(); ++i) {
|
||||
int in_size = 1 + input_dilation_[i] * (in.shape(1 + i) - 1);
|
||||
int out_size = 1 + kernel_strides_[i] * (cotan.shape(1 + i) - 1);
|
||||
int wt_size = 1 + kernel_dilation_[i] * (wt.shape(1 + i) - 1);
|
||||
padding_hi[i] = out_size - in_size + wt_size - padding_[i] - 1;
|
||||
}
|
||||
auto cotan_trans = swapaxes(cotan, 0, -1, stream());
|
||||
auto in_trans = group_transpose(in, -1, 0, -1);
|
||||
|
||||
auto grad_trans = conv_general(
|
||||
/* const array& input = */ in_trans,
|
||||
/* const array& weight = */ cotan_trans,
|
||||
/* std::vector<int> stride = */ kernel_dilation_,
|
||||
/* std::vector<int> padding_lo = */ padding_lo,
|
||||
/* std::vector<int> padding_hi = */ padding_hi,
|
||||
/* std::vector<int> kernel_dilation = */ kernel_strides_,
|
||||
/* std::vector<int> input_dilation = */ input_dilation_,
|
||||
/* int groups = */ groups_,
|
||||
/* bool flip = */ false,
|
||||
stream());
|
||||
if (flip_) {
|
||||
auto start = Shape(grad_trans.ndim(), 0);
|
||||
auto stop = Shape(grad_trans.ndim(), 0);
|
||||
auto strides = Shape(grad_trans.ndim(), 1);
|
||||
for (int i = 0; i < stop.size(); ++i) {
|
||||
if (i >= 1 && i < stop.size() - 1) {
|
||||
start[i] = grad_trans.shape(i);
|
||||
stop[i] = -start[i] - 1;
|
||||
strides[i] = -1;
|
||||
} else {
|
||||
stop[i] = grad_trans.shape(i);
|
||||
}
|
||||
}
|
||||
grad_trans = slice(grad_trans, start, stop, strides, stream());
|
||||
}
|
||||
grads.push_back(swapaxes(grad_trans, 0, -1, stream()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user