Add Masked Scatter (#2663)

Co-authored-by: Awni Hannun <awni@apple.com>
Co-authored-by: Angelos Katharopoulos <katharas@gmail.com>
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
This commit is contained in:
CCYeh
2025-11-19 23:53:32 +01:00
committed by GitHub
parent 7f4b7e553c
commit b3825ac149
26 changed files with 1099 additions and 51 deletions

View File

@@ -70,7 +70,8 @@ Differences from NumPy
* Indexing does not perform bounds checking. Indexing out of bounds is
undefined behavior.
* Boolean mask based indexing is not yet supported.
* Boolean mask based indexing is supported for assignment only (see
:ref:`boolean-mask-assignment`).
The reason for the lack of bounds checking is that exceptions cannot propagate
from the GPU. Performing bounds checking for array indices before launching the
@@ -143,3 +144,51 @@ expected. For example:
In the above ``dfdx`` will have the correct gradient, namely zeros at ``idx``
and ones elsewhere.
.. _boolean-mask-assignment:
Boolean Mask Assignment
-----------------------
MLX supports boolean indices using NumPy syntax. A mask must already be
a :class:`bool_` MLX :class:`array` or a NumPy ``ndarray`` with ``dtype=bool``.
Other index types are routed through the standard scatter code.
.. code-block:: shell
>>> a = mx.array([1.0, 2.0, 3.0])
>>> mask = mx.array([True, False, True])
>>> updates = mx.array([5.0, 6.0])
>>> a[mask] = updates
>>> a
array([5.0, 2.0, 6.0], dtype=float32)
Scalar assignments broadcast to every ``True`` entry in ``mask``. For non-scalar
assignments, ``updates`` must provide at least as many elements as there are
``True`` entries in ``mask``.
.. code-block:: shell
>>> a = mx.zeros((2, 3))
>>> mask = mx.array([[True, False, True],
[False, False, True]])
>>> a[mask] = 1.0
>>> a
array([[1.0, 0.0, 1.0],
[0.0, 0.0, 1.0]], dtype=float32)
Boolean masks follow NumPy semantics:
- The mask shape must match the shape of the axes it indexes exactly. No mask
broadcasting occurs.
- Any axes not covered by the mask are taken in full.
.. code-block:: shell
>>> a = mx.arange(1000).reshape(10, 10, 10)
>>> a[mx.random.randn(10, 10) > 0.0] = 0 # valid: mask covers axes 0 and 1
The mask of shape ``(10, 10)`` applies to the first two axes, so ``a[mask]``
selects the 1-D slices ``a[i, j, :]`` where ``mask[i, j]`` is ``True``.
Shapes such as ``(1, 10, 10)`` or ``(10, 10, 1)`` do not match the indexed
axes and therefore raise errors.