mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 17:31:16 +08:00
Extensions (#962)
* start to fix extensions * mostly fixed extensions * fix extension build * couple more nits
This commit is contained in:
parent
42afe27e12
commit
b63ef10a7f
@ -1,24 +1,16 @@
|
||||
Developer Documentation
|
||||
=======================
|
||||
|
||||
MLX provides a open and flexible backend to which users may add operations
|
||||
and specialized implementations without much hassle. While the library supplies
|
||||
efficient operations that can be used and composed for any number of
|
||||
applications, there may arise cases where new functionalities or highly
|
||||
optimized implementations are needed. For such cases, you may design and
|
||||
implement your own operations that link to and build on top of :mod:`mlx.core`.
|
||||
We will introduce the inner-workings of MLX and go over a simple example to
|
||||
learn the steps involved in adding new operations to MLX with your own CPU
|
||||
and GPU implementations.
|
||||
You can extend MLX with custom operations on the CPU or GPU. This guide
|
||||
explains how to do that with a simple example.
|
||||
|
||||
Introducing the Example
|
||||
-----------------------
|
||||
|
||||
Let's say that you would like an operation that takes in two arrays,
|
||||
``x`` and ``y``, scales them both by some coefficients ``alpha`` and ``beta``
|
||||
respectively, and then adds them together to get the result
|
||||
``z = alpha * x + beta * y``. Well, you can very easily do that by just
|
||||
writing out a function as follows:
|
||||
Let's say you would like an operation that takes in two arrays, ``x`` and
|
||||
``y``, scales them both by coefficients ``alpha`` and ``beta`` respectively,
|
||||
and then adds them together to get the result ``z = alpha * x + beta * y``.
|
||||
You can do that in MLX directly:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -27,44 +19,35 @@ writing out a function as follows:
|
||||
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
||||
return alpha * x + beta * y
|
||||
|
||||
This function performs that operation while leaving the implementations and
|
||||
differentiation to MLX.
|
||||
This function performs that operation while leaving the implementation and
|
||||
function transformations to MLX.
|
||||
|
||||
However, you work with vector math libraries often and realize that the
|
||||
``axpby`` routine defines the same operation ``Y = (alpha * X) + (beta * Y)``.
|
||||
You would really like the part of your applications that does this operation
|
||||
on the CPU to be very fast - so you decide that you want it to rely on the
|
||||
``axpby`` routine provided by the Accelerate_ framework. Continuing to impose
|
||||
our assumptions on to you, let's also assume that you want to learn how to add
|
||||
your own implementation for the gradients of your new operation while going
|
||||
over the ins-and-outs of the MLX framework.
|
||||
However you may need to customize the underlying implementation, perhaps to
|
||||
make it faster or for custom differentiation. In this tutorial we will go
|
||||
through adding custom extensions. It will cover:
|
||||
|
||||
Well, what a coincidence! You are in the right place. Over the course of this
|
||||
example, we will learn:
|
||||
|
||||
* The structure of the MLX library from the frontend API to the backend implementations.
|
||||
* How to implement your own CPU backend that redirects to Accelerate_ when appropriate (and a fallback if needed).
|
||||
* How to implement your own GPU implementation using metal.
|
||||
* How to add your own ``vjp`` and ``jvp``.
|
||||
* How to build your implementations, link them to MLX, and bind them to python.
|
||||
* The structure of the MLX library.
|
||||
* Implementing a CPU operation that redirects to Accelerate_ when appropriate.
|
||||
* Implementing a GPU operation using metal.
|
||||
* Adding the ``vjp`` and ``jvp`` function transformation.
|
||||
* Building a custom extension and binding it to python.
|
||||
|
||||
Operations and Primitives
|
||||
-------------------------
|
||||
|
||||
In one sentence, operations in MLX build the computation graph, and primitives
|
||||
provide the rules for evaluation and transformations of said graph. Let's start
|
||||
by discussing operations in more detail.
|
||||
Operations in MLX build the computation graph. Primitives provide the rules for
|
||||
evaluating and transforming the graph. Let's start by discussing operations in
|
||||
more detail.
|
||||
|
||||
Operations
|
||||
^^^^^^^^^^^
|
||||
|
||||
Operations are the frontend functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`) and then we provide bindings to these
|
||||
operations in the Python API (:ref:`ops`).
|
||||
Operations are the front-end functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
||||
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and ``y``,
|
||||
and two scalars, ``alpha`` and ``beta``. This is how we would define it in the
|
||||
C++ API:
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and
|
||||
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
||||
C++:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@ -83,10 +66,7 @@ C++ API:
|
||||
StreamOrDevice s = {} // Stream on which to schedule the operation
|
||||
);
|
||||
|
||||
|
||||
This operation itself can call other operations within it if needed. So, the
|
||||
simplest way to go about implementing this operation would be do so in terms
|
||||
of existing operations.
|
||||
The simplest way to this operation is in terms of existing operations:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@ -105,20 +85,18 @@ of existing operations.
|
||||
return add(ax, by, s);
|
||||
}
|
||||
|
||||
However, as we discussed earlier, this is not our goal. The operations themselves
|
||||
do not contain the implementations that act on the data, nor do they contain the
|
||||
rules of transformations. Rather, they are an easy to use interface that build
|
||||
on top of the building blocks we call :class:`Primitive`.
|
||||
The operations themselves do not contain the implementations that act on the
|
||||
data, nor do they contain the rules of transformations. Rather, they are an
|
||||
easy to use interface that use :class:`Primitive` building blocks.
|
||||
|
||||
Primitives
|
||||
^^^^^^^^^^^
|
||||
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create an output given a set of input :class:`array` . Further,
|
||||
a :class:`Primitive` is a class that contains rules on how it is evaluated
|
||||
on the CPU or GPU, and how it acts under transformations such as ``vjp`` and
|
||||
``jvp``. These words on their own can be a bit abstract, so lets take a step
|
||||
back and go to our example to give ourselves a more concrete image.
|
||||
defines how to create outputs arrays given a input arrays. Further, a
|
||||
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
||||
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
|
||||
more concrete:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@ -134,11 +112,15 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_gpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
void eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array jvp(
|
||||
std::vector<array> jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) override;
|
||||
@ -147,7 +129,8 @@ back and go to our example to give ourselves a more concrete image.
|
||||
std::vector<array> vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) override;
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<array>& outputs) override;
|
||||
|
||||
/**
|
||||
* The primitive must know how to vectorize itself across
|
||||
@ -155,7 +138,7 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
std::pair<array, int> vmap(
|
||||
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
@ -175,22 +158,22 @@ back and go to our example to give ourselves a more concrete image.
|
||||
void eval(const std::vector<array>& inputs, array& out);
|
||||
};
|
||||
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class and
|
||||
follows the above demonstrated interface. :class:`Axpby` treats ``alpha`` and
|
||||
``beta`` as parameters. It then provides implementations of how the array ``out``
|
||||
is produced given ``inputs`` through :meth:`Axpby::eval_cpu` and
|
||||
:meth:`Axpby::eval_gpu`. Further, it provides rules of transformations in
|
||||
:meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and :meth:`Axpby::vmap`.
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
||||
:class:`Axpby` treats ``alpha`` and ``beta`` as parameters. It then provides
|
||||
implementations of how the output array is produced given the inputs through
|
||||
:meth:`Axpby::eval_cpu` and :meth:`Axpby::eval_gpu`. It also provides rules
|
||||
of transformations in :meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and
|
||||
:meth:`Axpby::vmap`.
|
||||
|
||||
Using the Primitives
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
Using the Primitive
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to
|
||||
the computation graph. An :class:`array` can be constructed by providing its
|
||||
data type, shape, the :class:`Primitive` that computes it, and the
|
||||
:class:`array` inputs that are passed to the primitive.
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to the
|
||||
computation graph. An :class:`array` can be constructed by providing its data
|
||||
type, shape, the :class:`Primitive` that computes it, and the :class:`array`
|
||||
inputs that are passed to the primitive.
|
||||
|
||||
Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
|
||||
Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@ -238,27 +221,26 @@ This operation now handles the following:
|
||||
Implementing the Primitive
|
||||
--------------------------
|
||||
|
||||
No computation happens when we call the operation alone. In effect, the
|
||||
operation only builds the computation graph. When we evaluate the output
|
||||
array, MLX schedules the execution of the computation graph, and calls
|
||||
:meth:`Axpby::eval_cpu` or :meth:`Axpby::eval_gpu` depending on the
|
||||
stream/device specified by the user.
|
||||
No computation happens when we call the operation alone. The operation only
|
||||
builds the computation graph. When we evaluate the output array, MLX schedules
|
||||
the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
||||
:meth:`Axpby::eval_gpu` depending on the stream/device specified by the user.
|
||||
|
||||
.. warning::
|
||||
When :meth:`Primitive::eval_cpu` or :meth:`Primitive::eval_gpu` are called,
|
||||
no memory has been allocated for the output array. It falls on the implementation
|
||||
of these functions to allocate memory as needed
|
||||
of these functions to allocate memory as needed.
|
||||
|
||||
Implementing the CPU Backend
|
||||
Implementing the CPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Let's start by trying to implement a naive and generic version of
|
||||
Let's start by implementing a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
|
||||
Our naive method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@ -296,19 +278,19 @@ pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
}
|
||||
}
|
||||
|
||||
Now, we would like our implementation to be able to do this pointwise operation
|
||||
for all incoming floating point arrays. Accordingly, we add dispatches for
|
||||
``float32``, ``float16``, ``bfloat16`` and ``complex64``. We throw an error
|
||||
if we encounter an unexpected type.
|
||||
Our implementation should work for all incoming floating point arrays.
|
||||
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
||||
``complex64``. We throw an error if we encounter an unexpected type.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(const std::vector<array>& inputs, array& out) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@ -321,28 +303,26 @@ if we encounter an unexpected type.
|
||||
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Axpby is only supported for floating point types.");
|
||||
"[Axpby] Only supports floating point types.");
|
||||
}
|
||||
}
|
||||
|
||||
We have a fallback implementation! Now, to do what we are really here to do.
|
||||
Remember we wanted to use the ``axpby`` routine provided by the Accelerate_
|
||||
framework? Well, there are 3 complications to keep in mind:
|
||||
This is good as a fallback implementation. We can use the ``axpby`` routine
|
||||
provided by the Accelerate_ framework for a faster implementation in certain
|
||||
cases:
|
||||
|
||||
#. Accelerate does not provide implementations of ``axpby`` for half precision
|
||||
floats. We can only direct to it for ``float32`` types
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all elements
|
||||
have fixed strides between them. Possibly due to broadcasts and transposes,
|
||||
we aren't guaranteed that the inputs fit this requirement. We can
|
||||
only direct to Accelerate if both ``x`` and ``y`` are row contiguous or
|
||||
column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` inplace.
|
||||
MLX expects to write out the answer to a new array. We must copy the elements
|
||||
of ``y`` into the output array and use that as an input to ``axpby``
|
||||
floats. We can only use it for ``float32`` types.
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all
|
||||
elements have fixed strides between them. We only direct to Accelerate
|
||||
if both ``x`` and ``y`` are row contiguous or column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` in-place.
|
||||
MLX expects to write the output to a new array. We must copy the elements
|
||||
of ``y`` into the output and use that as an input to ``axpby``.
|
||||
|
||||
Let's write out an implementation that uses Accelerate in the right conditions.
|
||||
It must simply allocate data for the output, copy elements of ``y`` into it,
|
||||
and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
Let's write an implementation that uses Accelerate in the right conditions.
|
||||
It allocates data for the output, copies ``y`` into it, and then calls the
|
||||
:func:`catlas_saxpby` from accelerate.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@ -356,17 +336,7 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
// Accelerate library provides catlas_saxpby which does
|
||||
// Y = (alpha * X) + (beta * Y) in place
|
||||
// To use it, we first copy the data in y over to the output array
|
||||
|
||||
// This specialization requires both x and y be contiguous in the same mode
|
||||
// i.e: corresponding linear indices in both point to corresponding elements
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@ -389,18 +359,20 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
/* INCY = */ 1);
|
||||
}
|
||||
|
||||
Great! But what about the inputs that do not fit the criteria for accelerate?
|
||||
Luckily, we can always just direct back to :meth:`Axpby::eval`.
|
||||
|
||||
With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
For inputs that do not fit the criteria for accelerate, we fall back to
|
||||
:meth:`Axpby::eval`. With this in mind, let's finish our
|
||||
:meth:`Axpby::eval_cpu`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@ -410,34 +382,32 @@ With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
return;
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, out);
|
||||
// Fall back to common back-end if specializations are not available
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
We have now hit a milestone! Just this much is enough to run the operation
|
||||
:meth:`axpby` on a CPU stream!
|
||||
|
||||
If you do not plan on running the operation on the GPU or using transforms on
|
||||
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
||||
you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
|
||||
Implementing the GPU Backend
|
||||
Implementing the GPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
||||
all GPU kernels in MLX are written using metal.
|
||||
GPU kernels in MLX are written using Metal.
|
||||
|
||||
.. note::
|
||||
|
||||
Here are some helpful resources if you are new to metal!
|
||||
Here are some helpful resources if you are new to Metal:
|
||||
|
||||
* A walkthrough of the metal compute pipeline: `Metal Example`_
|
||||
* Documentation for metal shading language: `Metal Specification`_
|
||||
* Using metal from C++: `Metal-cpp`_
|
||||
|
||||
Let's keep the GPU algorithm simple. We will launch exactly as many threads
|
||||
as there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the pointwise operation, and then update its assigned
|
||||
Let's keep the GPU kernel simple. We will launch exactly as many threads as
|
||||
there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the point-wise operation, and update its assigned
|
||||
element in the output.
|
||||
|
||||
.. code-block:: C++
|
||||
@ -464,8 +434,7 @@ element in the output.
|
||||
}
|
||||
|
||||
We then need to instantiate this template for all floating point types and give
|
||||
each instantiation a unique host name so we can identify the right kernel for
|
||||
each data type.
|
||||
each instantiation a unique host name so we can identify it.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@ -488,29 +457,21 @@ each data type.
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
|
||||
This kernel will be compiled into a metal library ``mlx_ext.metallib`` as we
|
||||
will see later in :ref:`Building with CMake`. In the following example, we
|
||||
assume that the library ``mlx_ext.metallib`` will always be co-located with
|
||||
the executable/ shared-library calling the :meth:`register_library` function.
|
||||
The :meth:`register_library` function takes the library's name and potential
|
||||
path (or in this case, a function that can produce the path of the metal
|
||||
library) and tries to load that library if it hasn't already been registered
|
||||
by the relevant static :class:`mlx::core::metal::Device` object. This is why,
|
||||
it is important to package your C++ library with the metal library. We will
|
||||
go over this process in more detail later.
|
||||
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions
|
||||
and dispatch it to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
||||
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
below.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
@ -521,7 +482,7 @@ below.
|
||||
// Allocate output memory
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
// Resolve name of kernel
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
|
||||
@ -575,28 +536,25 @@ below.
|
||||
|
||||
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
||||
|
||||
A few things to note about MLX and metal before moving on. MLX keeps track
|
||||
of the active ``compute_encoder``. We rely on :meth:`d.get_command_encoder`
|
||||
to give us the active metal compute command encoder instead of building a
|
||||
new one and calling :meth:`compute_encoder->end_encoding` at the end.
|
||||
MLX keeps adding kernels (compute pipelines) to the active command encoder
|
||||
until some specified limit is hit or the compute encoder needs to be flushed
|
||||
for synchronization. MLX also handles enqueuing and committing the associated
|
||||
command buffers as needed. We suggest taking a deeper dive into
|
||||
:class:`metal::Device` if you would like to study this routine further.
|
||||
A few things to note about MLX and Metal before moving on. MLX keeps track of
|
||||
the active ``command_buffer`` and the ``MTLCommandBuffer`` to which it is
|
||||
associated. We rely on :meth:`d.get_command_encoder` to give us the active
|
||||
metal compute command encoder instead of building a new one and calling
|
||||
:meth:`compute_encoder->end_encoding` at the end. MLX adds kernels (compute
|
||||
pipelines) to the active command buffer until some specified limit is hit or
|
||||
the command buffer needs to be flushed for synchronization.
|
||||
|
||||
Primitive Transforms
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Now that we have come this far, let's also learn how to add implementations to
|
||||
transformations in a :class:`Primitive`. These transformations can be built on
|
||||
top of our operations, including the one we just defined now. Which then gives
|
||||
us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
Next, let's add implementations for transformations in a :class:`Primitive`.
|
||||
These transformations can be built on top of other operations, including the
|
||||
one we just defined:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array Axpby::jvp(
|
||||
std::vector<array> Axpby::jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) {
|
||||
@ -611,12 +569,12 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
if (argnums.size() > 1) {
|
||||
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, tangents[0].dtype());
|
||||
return multiply(scale_arr, tangents[0], stream());
|
||||
return {multiply(scale_arr, tangents[0], stream())};
|
||||
}
|
||||
// If, argnums = {0, 1}, we take contributions from both
|
||||
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
||||
else {
|
||||
return axpby(tangents[0], tangents[1], alpha_, beta_, stream());
|
||||
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
||||
}
|
||||
}
|
||||
|
||||
@ -625,28 +583,29 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
/** The vector-Jacobian product. */
|
||||
std::vector<array> Axpby::vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) {
|
||||
const std::vector<array>& cotangents,
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<int>& /* unused */) {
|
||||
// Reverse mode diff
|
||||
std::vector<array> vjps;
|
||||
for (auto arg : argnums) {
|
||||
auto scale = arg == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, cotan.dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotan, stream()));
|
||||
auto scale_arr = array(scale, cotangents[0].dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
|
||||
}
|
||||
return vjps;
|
||||
}
|
||||
|
||||
Finally, you need not have a transformation fully defined to start using your
|
||||
own :class:`Primitive`.
|
||||
Note, a transformation does not need to be fully defined to start using
|
||||
the :class:`Primitive`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Vectorize primitive along given axis */
|
||||
std::pair<array, int> Axpby::vmap(
|
||||
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
throw std::runtime_error("Axpby has no vmap implementation.");
|
||||
throw std::runtime_error("[Axpby] vmap not implemented.");
|
||||
}
|
||||
|
||||
Building and Binding
|
||||
@ -667,36 +626,35 @@ Let's look at the overall directory structure first.
|
||||
|
||||
* ``extensions/axpby/`` defines the C++ extension library
|
||||
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
||||
associated python package
|
||||
* ``extensions/bindings.cpp`` provides python bindings for our operation
|
||||
associated Python package
|
||||
* ``extensions/bindings.cpp`` provides Python bindings for our operation
|
||||
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
||||
python bindings
|
||||
Python bindings
|
||||
* ``extensions/setup.py`` holds the ``setuptools`` rules to build and install
|
||||
the python package
|
||||
the Python package
|
||||
|
||||
Binding to Python
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
We use PyBind11_ to build a Python API for the C++ library. Since bindings for
|
||||
We use nanobind_ to build a Python API for the C++ library. Since bindings for
|
||||
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
|
||||
already provided, adding our :meth:`axpby` is simple!
|
||||
already provided, adding our :meth:`axpby` is simple.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
@ -711,7 +669,7 @@ already provided, adding our :meth:`axpby` is simple!
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
)");
|
||||
}
|
||||
|
||||
Most of the complexity in the above example comes from additional bells and
|
||||
@ -719,8 +677,8 @@ whistles such as the literal names and doc-strings.
|
||||
|
||||
.. warning::
|
||||
|
||||
:mod:`mlx.core` needs to be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the pybind11 module above to
|
||||
:mod:`mlx.core` must be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the nanobind module above to
|
||||
ensure that the casters for :mod:`mlx.core` components like
|
||||
:class:`mlx.core.array` are available.
|
||||
|
||||
@ -729,8 +687,8 @@ whistles such as the literal names and doc-strings.
|
||||
Building with CMake
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Building the C++ extension library itself is simple, it only requires that you
|
||||
``find_package(MLX CONFIG)`` and then link it to your library.
|
||||
Building the C++ extension library only requires that you ``find_package(MLX
|
||||
CONFIG)`` and then link it to your library.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@ -752,12 +710,12 @@ Building the C++ extension library itself is simple, it only requires that you
|
||||
# Link to mlx
|
||||
target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
We also need to build the attached metal library. For convenience, we provide a
|
||||
We also need to build the attached Metal library. For convenience, we provide a
|
||||
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
||||
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
||||
automatically imported with MLX package).
|
||||
|
||||
Here is what that looks like in practice!
|
||||
Here is what that looks like in practice:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@ -779,25 +737,27 @@ Here is what that looks like in practice!
|
||||
|
||||
endif()
|
||||
|
||||
Finally, we build the Pybind11_ bindings
|
||||
Finally, we build the nanobind_ bindings
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
||||
Building with ``setuptools``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Once we have set out the CMake build rules as described above, we can use the
|
||||
build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
build utilities defined in :mod:`mlx.extension`:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -809,48 +769,50 @@ build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages = ["mlx_sample_extensions"],
|
||||
package_dir = {"": "mlx_sample_extensions"},
|
||||
package_data = {"mlx_sample_extensions" : ["*.so", "*.dylib", "*.metallib"]},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev":[]},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.7",
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
||||
.. note::
|
||||
We treat ``extensions/mlx_sample_extensions`` as the package directory
|
||||
even though it only contains a ``__init__.py`` to ensure the following:
|
||||
|
||||
* :mod:`mlx.core` is always imported before importing :mod:`mlx_sample_extensions`
|
||||
* :mod:`mlx.core` must be imported before importing :mod:`_ext`
|
||||
* The C++ extension library and the metal library are co-located with the python
|
||||
bindings and copied together if the package is installed
|
||||
|
||||
You can build inplace for development using
|
||||
To build the package, first install the build dependencies with ``pip install
|
||||
-r requirements.txt``. You can then build inplace for development using
|
||||
``python setup.py build_ext -j8 --inplace`` (in ``extensions/``)
|
||||
|
||||
This will result in a directory structure as follows:
|
||||
This results in the directory structure:
|
||||
|
||||
| extensions
|
||||
| ├── mlx_sample_extensions
|
||||
| │ ├── __init__.py
|
||||
| │ ├── libmlx_ext.dylib # C++ extension library
|
||||
| │ ├── mlx_ext.metallib # Metal library
|
||||
| │ └── mlx_sample_extensions.cpython-3x-darwin.so # Python Binding
|
||||
| │ └── _ext.cpython-3x-darwin.so # Python Binding
|
||||
| ...
|
||||
|
||||
When you try to install using the command ``python -m pip install .``
|
||||
(in ``extensions/``), the package will be installed with the same structure as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and metal library will be
|
||||
copied along with the python binding since they are specified as ``package_data``.
|
||||
When you try to install using the command ``python -m pip install .`` (in
|
||||
``extensions/``), the package will be installed with the same structure as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and Metal library will be
|
||||
copied along with the Python binding since they are specified as
|
||||
``package_data``.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
After installing the extension as described above, you should be able to simply
|
||||
import the python package and play with it as you would any other MLX operation!
|
||||
import the Python package and play with it as you would any other MLX operation.
|
||||
|
||||
Let's looks at a simple script and it's results!
|
||||
Let's look at a simple script and its results:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -874,10 +836,10 @@ Output:
|
||||
c correctness: True
|
||||
|
||||
Results
|
||||
^^^^^^^^^^^^^^^^
|
||||
^^^^^^^
|
||||
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -898,7 +860,7 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
alpha = 4.0
|
||||
beta = 2.0
|
||||
|
||||
mx.eval((x, y))
|
||||
mx.eval(x, y)
|
||||
|
||||
def bench(f):
|
||||
# Warm up
|
||||
@ -919,30 +881,23 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
|
||||
print(f"Simple axpby: {simple_time:.3f} s | Custom axpby: {custom_time:.3f} s")
|
||||
|
||||
Results:
|
||||
|
||||
.. code-block::
|
||||
|
||||
Simple axpby: 0.114 s | Custom axpby: 0.109 s
|
||||
|
||||
We see some modest improvements right away!
|
||||
The results are ``Simple axpby: 0.114 s | Custom axpby: 0.109 s``. We see
|
||||
modest improvements right away!
|
||||
|
||||
This operation is now good to be used to build other operations, in
|
||||
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
|
||||
:meth:`grad`!
|
||||
:meth:`grad`.
|
||||
|
||||
Scripts
|
||||
-------
|
||||
|
||||
.. admonition:: Download the code
|
||||
|
||||
The full example code is available in `mlx <code>`_.
|
||||
|
||||
.. code: `https://github.com/ml-explore/mlx/tree/main/examples/extensions/`_
|
||||
The full example code is available in `mlx <https://github.com/ml-explore/mlx/tree/main/examples/extensions/>`_.
|
||||
|
||||
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
|
||||
.. _Metal: https://developer.apple.com/documentation/metal?language=objc
|
||||
.. _Metal-cpp: https://developer.apple.com/metal/cpp/
|
||||
.. _`Metal Specification`: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
||||
.. _`Metal Example`: https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
|
||||
.. _PyBind11: https://pybind11.readthedocs.io/en/stable/
|
||||
.. _nanobind: https://nanobind.readthedocs.io/en/latest/
|
||||
|
@ -1,6 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.27)
|
||||
|
||||
project(mlx_sample_extensions LANGUAGES CXX)
|
||||
project(_ext LANGUAGES CXX)
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
@ -11,8 +11,12 @@ option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
||||
|
||||
# ----------------------------- Dependencies -----------------------------
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
find_package(Python COMPONENTS Interpreter Development)
|
||||
find_package(pybind11 CONFIG REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
|
||||
# ----------------------------- Extensions -----------------------------
|
||||
|
||||
@ -38,7 +42,6 @@ target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
# Build metallib
|
||||
if(MLX_BUILD_METAL)
|
||||
|
||||
mlx_build_metallib(
|
||||
TARGET mlx_ext_metallib
|
||||
TITLE mlx_ext
|
||||
@ -54,13 +57,15 @@ if(MLX_BUILD_METAL)
|
||||
|
||||
endif()
|
||||
|
||||
# ----------------------------- Pybind -----------------------------
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
# ----------------------------- Python Bindings -----------------------------
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
18
examples/extensions/README.md
Normal file
18
examples/extensions/README.md
Normal file
@ -0,0 +1,18 @@
|
||||
|
||||
## Build the extensions
|
||||
|
||||
```
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
For faster builds during development, you can also pre-install the requirements:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
And then run:
|
||||
|
||||
```
|
||||
python setup.py build_ext -j8 --inplace
|
||||
```
|
@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
@ -43,7 +43,7 @@ array axpby(
|
||||
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
||||
|
||||
// Upcast to float32 for non-floating point inputs x and y
|
||||
auto out_dtype = is_floating_point(promoted_dtype)
|
||||
auto out_dtype = issubdtype(promoted_dtype, float32)
|
||||
? promoted_dtype
|
||||
: promote_types(promoted_dtype, float32);
|
||||
|
||||
@ -106,12 +106,12 @@ void axpby_impl(
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& out_arr) {
|
||||
auto out = out_arr[0];
|
||||
std::vector<array>& outputs) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@ -150,11 +150,7 @@ void axpby_impl_accelerate(
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@ -180,11 +176,11 @@ void axpby_impl_accelerate(
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outarr) {
|
||||
auto out = outarr[0];
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@ -195,7 +191,7 @@ void Axpby::eval_cpu(
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, outarr);
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#else // Accelerate not available
|
||||
@ -203,8 +199,8 @@ void Axpby::eval_cpu(
|
||||
/** Evaluate primitive on CPU falling back to common backend */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& out) {
|
||||
eval(inputs, out);
|
||||
const std::vector<array>& outputs) {
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#endif
|
||||
@ -218,12 +214,12 @@ void Axpby::eval_cpu(
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outarr) {
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
auto out = outarr[0];
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
|
@ -42,9 +42,9 @@ class Axpby : public Primitive {
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& out)
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& out)
|
||||
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
@ -83,7 +83,7 @@ class Axpby : public Primitive {
|
||||
float beta_;
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void eval(const std::vector<array>& inputs, std::vector<array>& out);
|
||||
void eval(const std::vector<array>& inputs, std::vector<array>& outputs);
|
||||
};
|
||||
|
||||
} // namespace mlx::core
|
@ -1,28 +1,28 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <nanobind/nanobind.h>
|
||||
#include <nanobind/stl/variant.h>
|
||||
|
||||
#include "axpby/axpby.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
namespace nb = nanobind;
|
||||
using namespace nb::literals;
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
@ -37,5 +37,5 @@ PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
)");
|
||||
}
|
@ -1,3 +1,8 @@
|
||||
[build-system]
|
||||
requires = ["setuptools>=42", "pybind11>=2.10", "cmake>=3.24", "mlx @ git+https://github.com/mlx-explore/mlx@main"]
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"cmake>=3.24",
|
||||
"mlx>=0.9.0",
|
||||
"nanobind@git+https://github.com/wjakob/nanobind.git#egg=4148debcf91f5ccab0c3b8d67b5c3cabd61f407f",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
4
examples/extensions/requirements.txt
Normal file
4
examples/extensions/requirements.txt
Normal file
@ -0,0 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.24
|
||||
mlx>=0.9.0
|
||||
nanobind@git+https://github.com/wjakob/nanobind.git#egg=4148debcf91f5ccab0c3b8d67b5c3cabd61f407f
|
@ -1,4 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from setuptools import setup
|
||||
|
||||
@ -9,11 +9,11 @@ if __name__ == "__main__":
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_dir={"": "."},
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev": []},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user