scatter axis + gather axis primitives (#1813)

* scatter axis + gather axis primitives

* add transforms

* comment
This commit is contained in:
Awni Hannun
2025-01-31 20:48:08 -08:00
committed by GitHub
parent c6fc07f1f4
commit b7c9f1d38f
15 changed files with 1037 additions and 85 deletions

View File

@@ -669,6 +669,37 @@ class TestAutograd(mlx_tests.MLXTestCase):
_, (expected,) = mx.jvp(lambda c: mx.addmm(c, a, b), (c,), (z,))
self.assertTrue(mx.allclose(tangent, expected))
def test_put_along_axis_grads(self):
a = mx.zeros((5, 1))
b = mx.ones((2, 1))
def fun(a, b):
idx = mx.array([[0], [3]])
return mx.put_along_axis(a, idx, b, axis=0)
# Test VJP
cotan = mx.full((5, 1), 2.0)
_, (da, db) = mx.vjp(fun, (a, b), (cotan,))
expected_da = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
expected_db = mx.array([2.0, 2.0])[:, None]
self.assertTrue(mx.allclose(expected_da, da))
self.assertTrue(mx.allclose(expected_db, db))
# Test JVP
tan_a = mx.full((5, 1), 2.0)
tan_b = mx.full((2, 1), 3.0)
_, (jout,) = mx.jvp(fun, (a, b), (tan_a, tan_b))
expected = mx.array([3.0, 2.0, 2.0, 3.0, 2.0])[:, None]
self.assertTrue(mx.allclose(expected, jout))
def fun(a):
idx = mx.array([[0], [3]])
return mx.put_along_axis(a, idx, b, axis=0)
_, (jout,) = mx.jvp(fun, (a,), (tan_a,))
expected = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
self.assertTrue(mx.allclose(expected, jout))
if __name__ == "__main__":
unittest.main()

View File

@@ -1150,6 +1150,15 @@ class TestOps(mlx_tests.MLXTestCase):
out_mlx = mx.put_along_axis(a_mlx, idx_mlx, values_mlx, axis=ax)
self.assertTrue(np.array_equal(a_np, out_mlx))
source = mx.zeros((1, 1, 8, 32))
indices = mx.array([0, 2, 4, 5]).reshape((1, 1, 4, 1))
update = mx.array(1.0)
out_mlx = mx.put_along_axis(source, indices, update, axis=-2)
out_np = np.array(source)
np.put_along_axis(out_np, np.array(indices), np.array(update), axis=-2)
self.assertTrue(np.array_equal(out_np, np.array(out_mlx)))
def test_split(self):
a = mx.array([1, 2, 3])
splits = mx.split(a, 3)

View File

@@ -549,6 +549,53 @@ class TestVmap(mlx_tests.MLXTestCase):
target = mx.concatenate([x, mx.ones((2, 2, 1))], axis=2)
self.assertTrue(mx.array_equal(out, target))
def test_vmap_take_along_axis(self):
a = mx.zeros((4, 5, 1))
idx = mx.zeros((2, 4, 1), mx.int32)
def fun(a, idx):
return mx.take_along_axis(a, idx, axis=0)
out = mx.vmap(fun, in_axes=(0, 1))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
idx = mx.zeros((2, 1), mx.int32)
out = mx.vmap(fun, in_axes=(0, None))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
a = mx.zeros((5, 1))
idx = mx.zeros((4, 2, 1), mx.int32)
out = mx.vmap(fun, in_axes=(None, 0))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
def test_vmap_put_along_axis(self):
a = mx.zeros((4, 5, 1))
idx = mx.ones((2, 4, 1), mx.int32)
upd = mx.ones((2, 4, 1))
def fun(a, idx, upd):
return mx.put_along_axis(a, idx, upd, axis=0)
out = mx.vmap(fun, in_axes=(0, 1, 1))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
upd = mx.ones((2, 1))
out = mx.vmap(fun, in_axes=(0, 1, None))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
idx = mx.ones((2, 1), mx.int32)
upd = mx.ones((2, 1))
out = mx.vmap(fun, in_axes=(0, None, None))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
a = mx.zeros((5, 1))
idx = mx.ones((2, 4, 1), mx.int32)
upd = mx.ones((2, 4, 1))
out = mx.vmap(fun, in_axes=(None, 1, 1))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
if __name__ == "__main__":
unittest.main()