scatter axis + gather axis primitives (#1813)

* scatter axis + gather axis primitives

* add transforms

* comment
This commit is contained in:
Awni Hannun 2025-01-31 20:48:08 -08:00 committed by GitHub
parent c6fc07f1f4
commit b7c9f1d38f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 1037 additions and 85 deletions

View File

@ -16,11 +16,6 @@ inline size_t offset_neg_idx(IdxT idx, size_t size) {
return (idx < 0) ? idx + size : idx; return (idx < 0) ? idx + size : idx;
} }
template <>
inline size_t offset_neg_idx(bool idx, size_t) {
return idx;
}
template <> template <>
inline size_t offset_neg_idx(uint32_t idx, size_t) { inline size_t offset_neg_idx(uint32_t idx, size_t) {
return idx; return idx;
@ -169,14 +164,11 @@ void Gather::eval_cpu(const std::vector<array>& inputs, array& out) {
std::vector<array> inds(inputs.begin() + 1, inputs.end()); std::vector<array> inds(inputs.begin() + 1, inputs.end());
if (inds.empty()) { if (inds.empty()) {
dispatch_gather<bool>(src, inds, out, axes_, slice_sizes_); dispatch_gather<uint8_t>(src, inds, out, axes_, slice_sizes_);
return; return;
} }
switch (inds[0].dtype()) { switch (inds[0].dtype()) {
case bool_:
dispatch_gather<bool>(src, inds, out, axes_, slice_sizes_);
break;
case uint8: case uint8:
dispatch_gather<uint8_t>(src, inds, out, axes_, slice_sizes_); dispatch_gather<uint8_t>(src, inds, out, axes_, slice_sizes_);
break; break;
@ -201,12 +193,142 @@ void Gather::eval_cpu(const std::vector<array>& inputs, array& out) {
case int64: case int64:
dispatch_gather<int64_t>(src, inds, out, axes_, slice_sizes_); dispatch_gather<int64_t>(src, inds, out, axes_, slice_sizes_);
break; break;
case float16: default:
case float32:
case bfloat16:
case complex64:
throw std::runtime_error( throw std::runtime_error(
"[Gather::eval] Cannot gather with floating point indices."); "[Gather::eval_cpu] Cannot gather with indices type.");
break;
}
}
template <typename T, typename IdxT>
void gather_axis(
const array& src,
const array& ind,
array& out,
const int axis) {
auto strides = ind.strides();
strides.erase(strides.begin() + axis);
auto shape = ind.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator ind_it(shape, strides, src.ndim() - 1);
strides = src.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator src_it(shape, strides, src.ndim() - 1);
auto ind_ptr = ind.data<IdxT>();
auto src_ptr = src.data<T>();
auto dst_ptr = out.data<T>();
auto ind_ax_stride = ind.strides(axis);
auto src_ax_stride = src.strides(axis);
auto dst_ax_stride = out.strides(axis);
auto ind_ax_size = ind.shape(axis);
auto src_ax_size = src.shape(axis);
size_t size_pre = 1;
size_t size_post = 1;
for (int i = 0; i < axis; ++i) {
size_pre *= ind.shape(i);
}
for (int i = axis + 1; i < ind.ndim(); ++i) {
size_post *= ind.shape(i);
}
size_t stride_pre = size_post * ind_ax_size;
for (size_t i = 0; i < size_pre; i++) {
for (size_t k = 0; k < size_post; k++) {
for (int j = 0; j < ind_ax_size; ++j) {
auto ind_val = offset_neg_idx(
ind_ptr[ind_it.loc + j * ind_ax_stride], src_ax_size);
dst_ptr[k + j * dst_ax_stride] =
src_ptr[src_it.loc + ind_val * src_ax_stride];
}
ind_it.step();
src_it.step();
}
dst_ptr += stride_pre;
}
}
template <typename IdxT>
void dispatch_gather_axis(
const array& src,
const array& inds,
array& out,
const int axis) {
switch (out.dtype()) {
case bool_:
gather_axis<bool, IdxT>(src, inds, out, axis);
break;
case uint8:
gather_axis<uint8_t, IdxT>(src, inds, out, axis);
break;
case uint16:
gather_axis<uint16_t, IdxT>(src, inds, out, axis);
break;
case uint32:
gather_axis<uint32_t, IdxT>(src, inds, out, axis);
break;
case uint64:
gather_axis<uint64_t, IdxT>(src, inds, out, axis);
break;
case int8:
gather_axis<int8_t, IdxT>(src, inds, out, axis);
break;
case int16:
gather_axis<int16_t, IdxT>(src, inds, out, axis);
break;
case int32:
gather_axis<int32_t, IdxT>(src, inds, out, axis);
break;
case int64:
gather_axis<int64_t, IdxT>(src, inds, out, axis);
break;
case float16:
gather_axis<float16_t, IdxT>(src, inds, out, axis);
break;
case float32:
gather_axis<float, IdxT>(src, inds, out, axis);
break;
case bfloat16:
gather_axis<bfloat16_t, IdxT>(src, inds, out, axis);
break;
case complex64:
gather_axis<complex64_t, IdxT>(src, inds, out, axis);
break;
}
}
void GatherAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& src = inputs[0];
auto& inds = inputs[1];
switch (inds.dtype()) {
case uint8:
dispatch_gather_axis<uint8_t>(src, inds, out, axis_);
break;
case uint16:
dispatch_gather_axis<uint16_t>(src, inds, out, axis_);
break;
case uint32:
dispatch_gather_axis<uint32_t>(src, inds, out, axis_);
break;
case uint64:
dispatch_gather_axis<uint64_t>(src, inds, out, axis_);
break;
case int8:
dispatch_gather_axis<int8_t>(src, inds, out, axis_);
break;
case int16:
dispatch_gather_axis<int16_t>(src, inds, out, axis_);
break;
case int32:
dispatch_gather_axis<int32_t>(src, inds, out, axis_);
break;
case int64:
dispatch_gather_axis<int64_t>(src, inds, out, axis_);
break;
default:
throw std::runtime_error(
"[GatherAxis::eval_cpu] Cannot gather with indices type.");
break; break;
} }
} }
@ -296,14 +418,11 @@ void dispatch_scatter(
const std::vector<int>& axes, const std::vector<int>& axes,
Scatter::ReduceType rtype) { Scatter::ReduceType rtype) {
if (inds.empty()) { if (inds.empty()) {
dispatch_scatter_inds<InT, bool>(out, inds, updates, axes, rtype); dispatch_scatter_inds<InT, uint8_t>(out, inds, updates, axes, rtype);
return; return;
} }
switch (inds[0].dtype()) { switch (inds[0].dtype()) {
case bool_:
dispatch_scatter_inds<InT, bool>(out, inds, updates, axes, rtype);
break;
case uint8: case uint8:
dispatch_scatter_inds<InT, uint8_t>(out, inds, updates, axes, rtype); dispatch_scatter_inds<InT, uint8_t>(out, inds, updates, axes, rtype);
break; break;
@ -328,12 +447,9 @@ void dispatch_scatter(
case int64: case int64:
dispatch_scatter_inds<InT, int64_t>(out, inds, updates, axes, rtype); dispatch_scatter_inds<InT, int64_t>(out, inds, updates, axes, rtype);
break; break;
case float16: default:
case float32:
case bfloat16:
case complex64:
throw std::runtime_error( throw std::runtime_error(
"[Scatter::eval_cpu] Cannot scatter with floating point indices."); "[Scatter::eval_cpu] Cannot scatter with indices type.");
} }
} }
@ -345,7 +461,9 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& updates = inputs.back(); auto& updates = inputs.back();
// Copy src into out (copy allocates memory for out) // Copy src into out (copy allocates memory for out)
copy(src, out, CopyType::General); auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype);
switch (src.dtype()) { switch (src.dtype()) {
case bool_: case bool_:
@ -390,4 +508,167 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
} }
} }
template <typename T, typename IdxT, typename OpT>
void scatter_axis(
array& out,
const array idx,
const array& upd,
int axis,
const OpT& op) {
auto strides = idx.strides();
strides.erase(strides.begin() + axis);
auto shape = idx.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator idx_it(shape, strides, upd.ndim() - 1);
strides = upd.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator upd_it(shape, strides, upd.ndim() - 1);
auto idx_ptr = idx.data<IdxT>();
auto upd_ptr = upd.data<T>();
auto dst_ptr = out.data<T>();
auto idx_ax_stride = idx.strides(axis);
auto upd_ax_stride = upd.strides(axis);
auto dst_ax_stride = out.strides(axis);
auto idx_ax_size = idx.shape(axis);
auto dst_ax_size = out.shape(axis);
size_t size_pre = 1;
size_t size_post = 1;
for (int i = 0; i < axis; ++i) {
size_pre *= idx.shape(i);
}
for (int i = axis + 1; i < idx.ndim(); ++i) {
size_post *= idx.shape(i);
}
size_t stride_pre = size_post * dst_ax_size;
for (size_t i = 0; i < size_pre; i++) {
for (size_t k = 0; k < size_post; k++) {
for (int j = 0; j < idx_ax_size; ++j) {
auto ind_val = offset_neg_idx(
idx_ptr[idx_it.loc + j * idx_ax_stride], dst_ax_size);
op(upd_ptr[upd_it.loc + j * upd_ax_stride],
dst_ptr + k + ind_val * dst_ax_stride);
}
idx_it.step();
upd_it.step();
}
dst_ptr += stride_pre;
}
}
template <typename InT, typename IdxT>
void dispatch_scatter_axis_op(
array& out,
const array& idx,
const array& updates,
int axis,
ScatterAxis::ReduceType rtype) {
switch (rtype) {
case ScatterAxis::None:
scatter_axis<InT, IdxT>(
out, idx, updates, axis, [](auto x, auto* y) { (*y) = x; });
break;
case ScatterAxis::Sum:
scatter_axis<InT, IdxT>(
out, idx, updates, axis, [](auto x, auto* y) { (*y) += x; });
break;
}
}
template <typename InT>
void dispatch_scatter_axis(
array& out,
const array& idx,
const array& updates,
int axis,
ScatterAxis::ReduceType rtype) {
switch (idx.dtype()) {
case uint8:
dispatch_scatter_axis_op<InT, uint8_t>(out, idx, updates, axis, rtype);
break;
case uint16:
dispatch_scatter_axis_op<InT, uint16_t>(out, idx, updates, axis, rtype);
break;
case uint32:
dispatch_scatter_axis_op<InT, uint32_t>(out, idx, updates, axis, rtype);
break;
case uint64:
dispatch_scatter_axis_op<InT, uint64_t>(out, idx, updates, axis, rtype);
break;
case int8:
dispatch_scatter_axis_op<InT, int8_t>(out, idx, updates, axis, rtype);
break;
case int16:
dispatch_scatter_axis_op<InT, int16_t>(out, idx, updates, axis, rtype);
break;
case int32:
dispatch_scatter_axis_op<InT, int32_t>(out, idx, updates, axis, rtype);
break;
case int64:
dispatch_scatter_axis_op<InT, int64_t>(out, idx, updates, axis, rtype);
break;
default:
throw std::runtime_error(
"[ScatterAxis::eval_cpu] Cannot scatter with indices type.");
}
}
void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() >= 2);
auto& src = inputs[0];
auto& idx = inputs[1];
auto& updates = inputs[2];
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype);
switch (src.dtype()) {
case bool_:
dispatch_scatter_axis<bool>(out, idx, updates, axis_, reduce_type_);
break;
case uint8:
dispatch_scatter_axis<uint8_t>(out, idx, updates, axis_, reduce_type_);
break;
case uint16:
dispatch_scatter_axis<uint16_t>(out, idx, updates, axis_, reduce_type_);
break;
case uint32:
dispatch_scatter_axis<uint32_t>(out, idx, updates, axis_, reduce_type_);
break;
case uint64:
dispatch_scatter_axis<uint64_t>(out, idx, updates, axis_, reduce_type_);
break;
case int8:
dispatch_scatter_axis<int8_t>(out, idx, updates, axis_, reduce_type_);
break;
case int16:
dispatch_scatter_axis<int16_t>(out, idx, updates, axis_, reduce_type_);
break;
case int32:
dispatch_scatter_axis<int32_t>(out, idx, updates, axis_, reduce_type_);
break;
case int64:
dispatch_scatter_axis<int64_t>(out, idx, updates, axis_, reduce_type_);
break;
case float16:
dispatch_scatter_axis<float16_t>(out, idx, updates, axis_, reduce_type_);
break;
case float32:
dispatch_scatter_axis<float>(out, idx, updates, axis_, reduce_type_);
break;
case bfloat16:
dispatch_scatter_axis<bfloat16_t>(out, idx, updates, axis_, reduce_type_);
break;
case complex64:
dispatch_scatter_axis<complex64_t>(
out, idx, updates, axis_, reduce_type_);
break;
}
}
} // namespace mlx::core } // namespace mlx::core

View File

@ -35,6 +35,8 @@ make_jit_source(ternary_ops)
make_jit_source(reduce_utils kernels/atomic.h kernels/reduction/ops.h) make_jit_source(reduce_utils kernels/atomic.h kernels/reduction/ops.h)
make_jit_source(scatter kernels/indexing.h) make_jit_source(scatter kernels/indexing.h)
make_jit_source(gather kernels/indexing.h) make_jit_source(gather kernels/indexing.h)
make_jit_source(gather_axis)
make_jit_source(scatter_axis)
make_jit_source(hadamard) make_jit_source(hadamard)
if(MLX_METAL_JIT) if(MLX_METAL_JIT)

View File

@ -6,6 +6,7 @@
#include "mlx/backend/metal/device.h" #include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/jit/includes.h" #include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/jit/indexing.h" #include "mlx/backend/metal/jit/indexing.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h" #include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/utils.h" #include "mlx/utils.h"
@ -388,4 +389,217 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
compute_encoder.dispatch_threads(grid_dims, group_dims); compute_encoder.dispatch_threads(grid_dims, group_dims);
} }
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& src = inputs[0];
auto& idx = inputs[1];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& d = metal::device(s.device);
size_t ndim = src.ndim();
bool large = idx.size() > INT32_MAX || src.size() > INT32_MAX;
std::string kernel_name = fmt::format(
"gather_axis{0}{1}_{2}",
type_to_name(out),
type_to_name(idx),
large ? "int64_t" : "int");
std::string lib_name = kernel_name;
kernel_name += src.flags().row_contiguous ? "c" : "nc";
kernel_name += idx.flags().row_contiguous ? "c" : "nc";
auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source = metal::utils();
kernel_source += metal::gather_axis();
std::string out_type_str = get_type_string(out.dtype());
std::string idx_type_str = get_type_string(idx.dtype());
for (int i = 0; i < 4; ++i) {
bool sc = i & 1;
bool ic = i & 2;
kernel_source += get_template_definition(
lib_name + (sc ? "c" : "nc") + (ic ? "c" : "nc"),
"gather_axis",
out_type_str,
idx_type_str,
large ? "int64_t" : "int",
sc ? "true" : "false",
ic ? "true" : "false");
}
return kernel_source;
});
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kernel_name, lib);
compute_encoder.set_compute_pipeline_state(kernel);
// Grid [size post, index size, size pre]
size_t size_pre = 1;
size_t size_post = 1;
for (int i = 0; i < axis_; ++i) {
size_pre *= idx.shape(i);
}
for (int i = axis_ + 1; i < idx.ndim(); ++i) {
size_post *= idx.shape(i);
}
int idx_ax_size = idx.shape(axis_);
auto group_dims = get_block_dims(size_post, idx_ax_size, size_pre);
MTL::Size grid_dims = MTL::Size(size_post, idx_ax_size, size_pre);
// Set all the buffers
compute_encoder.set_input_array(src, 0);
compute_encoder.set_input_array(idx, 1);
compute_encoder.set_output_array(out, 2);
// Set source info
auto shape = idx.shape();
shape.erase(shape.begin() + axis_);
compute_encoder.set_vector_bytes(shape, 3);
auto strides = src.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 4);
strides = idx.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 5);
compute_encoder.set_bytes(ndim - 1, 6);
compute_encoder.set_bytes(axis_, 7);
compute_encoder.set_bytes(src.shape(axis_), 8);
compute_encoder.set_bytes(src.strides(axis_), 9);
compute_encoder.set_bytes(idx.strides(axis_), 10);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& src = inputs[0];
auto& idx = inputs[1];
auto& upd = inputs[2];
// Copy src into out
CopyType copy_type;
if (src.data_size() == 1) {
copy_type = CopyType::Scalar;
} else if (src.flags().row_contiguous) {
copy_type = CopyType::Vector;
} else {
copy_type = CopyType::General;
}
copy_gpu(src, out, copy_type);
// Empty update
if (upd.size() == 0) {
return;
}
auto& s = stream();
auto& d = metal::device(s.device);
size_t ndim = src.ndim();
bool large = idx.size() > INT32_MAX || src.size() > INT32_MAX;
std::string op_name;
switch (reduce_type_) {
case ScatterAxis::None:
op_name = "none";
break;
case ScatterAxis::Sum:
op_name = "sum";
break;
}
std::string kernel_name = fmt::format(
"scatter_axis{0}{1}_{2}_{3}",
type_to_name(out),
type_to_name(idx),
op_name,
large ? "int64_t" : "int");
std::string lib_name = kernel_name;
kernel_name += upd.flags().row_contiguous ? "c" : "nc";
kernel_name += idx.flags().row_contiguous ? "c" : "nc";
auto lib = d.get_library(lib_name, [&]() {
std::string kernel_source = metal::utils();
kernel_source += metal::reduce_utils();
kernel_source += metal::scatter_axis();
std::string out_type_str = get_type_string(out.dtype());
std::string idx_type_str = get_type_string(idx.dtype());
std::string op_type;
switch (reduce_type_) {
case ScatterAxis::None:
op_type = "None";
break;
case ScatterAxis::Sum:
op_type = "Sum<" + out_type_str + ">";
break;
}
for (int i = 0; i < 4; ++i) {
bool uc = i & 1;
bool ic = i & 2;
kernel_source += get_template_definition(
lib_name + (uc ? "c" : "nc") + (ic ? "c" : "nc"),
"scatter_axis",
out_type_str,
idx_type_str,
large ? "int64_t" : "int",
op_type,
uc ? "true" : "false",
ic ? "true" : "false");
}
return kernel_source;
});
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kernel_name, lib);
compute_encoder.set_compute_pipeline_state(kernel);
// Grid [size post, index size, size pre]
size_t size_pre = 1;
size_t size_post = 1;
for (int i = 0; i < axis_; ++i) {
size_pre *= idx.shape(i);
}
for (int i = axis_ + 1; i < idx.ndim(); ++i) {
size_post *= idx.shape(i);
}
int idx_ax_size = idx.shape(axis_);
auto group_dims = get_block_dims(size_post, idx_ax_size, size_pre);
MTL::Size grid_dims = MTL::Size(size_post, idx_ax_size, size_pre);
// Set all the buffers
compute_encoder.set_input_array(upd, 0);
compute_encoder.set_input_array(idx, 1);
compute_encoder.set_output_array(out, 2);
// Set source info
auto shape = idx.shape();
shape.erase(shape.begin() + axis_);
compute_encoder.set_vector_bytes(shape, 3);
auto strides = upd.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 4);
strides = idx.strides();
strides.erase(strides.begin() + axis_);
compute_encoder.set_vector_bytes(strides, 5);
compute_encoder.set_bytes(ndim - 1, 6);
compute_encoder.set_bytes(axis_, 7);
compute_encoder.set_bytes(out.shape(axis_), 8);
compute_encoder.set_bytes(upd.strides(axis_), 9);
compute_encoder.set_bytes(idx.strides(axis_), 10);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
} // namespace mlx::core } // namespace mlx::core

View File

@ -18,10 +18,12 @@ const char* binary();
const char* binary_two(); const char* binary_two();
const char* copy(); const char* copy();
const char* fft(); const char* fft();
const char* gather_axis();
const char* hadamard(); const char* hadamard();
const char* quantized(); const char* quantized();
const char* ternary(); const char* ternary();
const char* scan(); const char* scan();
const char* scatter_axis();
const char* softmax(); const char* softmax();
const char* sort(); const char* sort();
const char* reduce(); const char* reduce();

View File

@ -0,0 +1,44 @@
// Copyright © 2025 Apple Inc.
#pragma once
template <typename T, typename IdxT, typename LocT, bool SrcC, bool IdxC>
[[kernel]] void gather_axis(
const device T* src [[buffer(0)]],
const device IdxT* indices [[buffer(1)]],
device T* out [[buffer(2)]],
const constant int* shape [[buffer(3)]],
const constant int64_t* src_strides [[buffer(4)]],
const constant int64_t* idx_strides [[buffer(5)]],
const constant size_t& ndim [[buffer(6)]],
const constant int& axis [[buffer(7)]],
const constant int& axis_size [[buffer(8)]],
const constant size_t& src_ax_stride [[buffer(9)]],
const constant size_t& idx_ax_stride [[buffer(10)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
LocT elem_idx = index.z * static_cast<LocT>(grid_dim.x);
LocT out_idx = elem_idx * grid_dim.y + index.x;
LocT idx_loc = index.y * static_cast<LocT>(idx_ax_stride);
if (IdxC) {
idx_loc += out_idx;
} else {
idx_loc += elem_to_loc<LocT>(elem_idx + index.x, shape, idx_strides, ndim);
}
auto idx_val = indices[idx_loc];
if (is_signed_v<IdxT>) {
idx_val = (idx_val < 0) ? idx_val + axis_size : idx_val;
}
LocT src_idx = idx_val * static_cast<LocT>(src_ax_stride);
if (SrcC) {
src_idx += elem_idx * axis_size + index.x;
} else {
src_idx += elem_to_loc<LocT>(elem_idx + index.x, shape, src_strides, ndim);
}
out_idx += index.y * static_cast<LocT>(grid_dim.x);
out[out_idx] = src[src_idx];
}

View File

@ -0,0 +1,52 @@
// Copyright © 2025 Apple Inc.
#pragma once
template <
typename T,
typename IdxT,
typename LocT,
typename Op,
bool UpdC,
bool IdxC>
[[kernel]] void scatter_axis(
const device T* upd [[buffer(0)]],
const device IdxT* indices [[buffer(1)]],
device mlx_atomic<T>* out [[buffer(2)]],
const constant int* shape [[buffer(3)]],
const constant int64_t* upd_strides [[buffer(4)]],
const constant int64_t* idx_strides [[buffer(5)]],
const constant size_t& ndim [[buffer(6)]],
const constant int& axis [[buffer(7)]],
const constant int& out_axis_size [[buffer(8)]],
const constant size_t& upd_ax_stride [[buffer(9)]],
const constant size_t& idx_ax_stride [[buffer(10)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
Op op;
LocT elem_idx = index.z * static_cast<LocT>(grid_dim.x);
LocT idx_loc = index.y * static_cast<LocT>(idx_ax_stride);
if (IdxC) {
idx_loc += elem_idx * grid_dim.y + index.x;
} else {
idx_loc += elem_to_loc<LocT>(elem_idx + index.x, shape, idx_strides, ndim);
}
auto idx_val = indices[idx_loc];
if (is_signed_v<IdxT>) {
idx_val = (idx_val < 0) ? idx_val + out_axis_size : idx_val;
}
LocT upd_idx = index.y * static_cast<LocT>(upd_ax_stride);
if (UpdC) {
upd_idx += elem_idx * grid_dim.y + index.x;
} else {
upd_idx += elem_to_loc<LocT>(elem_idx + index.x, shape, upd_strides, ndim);
}
LocT out_idx = elem_idx * static_cast<LocT>(out_axis_size) +
idx_val * grid_dim.x + index.x;
op.atomic_update(out, upd[upd_idx], out_idx);
}

View File

@ -65,6 +65,7 @@ NO_CPU(Flatten)
NO_CPU(Floor) NO_CPU(Floor)
NO_CPU(Full) NO_CPU(Full)
NO_CPU(Gather) NO_CPU(Gather)
NO_CPU(GatherAxis)
NO_CPU(GatherMM) NO_CPU(GatherMM)
NO_CPU(GatherQMM) NO_CPU(GatherQMM)
NO_CPU(Greater) NO_CPU(Greater)
@ -98,6 +99,7 @@ NO_CPU(Reshape)
NO_CPU(Round) NO_CPU(Round)
NO_CPU(Scan) NO_CPU(Scan)
NO_CPU(Scatter) NO_CPU(Scatter)
NO_CPU(ScatterAxis)
NO_CPU(Select) NO_CPU(Select)
NO_CPU(Sigmoid) NO_CPU(Sigmoid)
NO_CPU(Sign) NO_CPU(Sign)

View File

@ -65,6 +65,7 @@ NO_GPU(Flatten)
NO_GPU(Floor) NO_GPU(Floor)
NO_GPU(Full) NO_GPU(Full)
NO_GPU(Gather) NO_GPU(Gather)
NO_GPU(GatherAxis)
NO_GPU(GatherMM) NO_GPU(GatherMM)
NO_GPU(GatherQMM) NO_GPU(GatherQMM)
NO_GPU(Greater) NO_GPU(Greater)
@ -98,6 +99,7 @@ NO_GPU(Reshape)
NO_GPU(Round) NO_GPU(Round)
NO_GPU(Scan) NO_GPU(Scan)
NO_GPU(Scatter) NO_GPU(Scatter)
NO_GPU(ScatterAxis)
NO_GPU(Select) NO_GPU(Select)
NO_GPU(Sigmoid) NO_GPU(Sigmoid)
NO_GPU(Sign) NO_GPU(Sign)

View File

@ -68,7 +68,7 @@ array indices_or_default(
Shape shape(x.shape().begin(), x.shape().end() - 2); Shape shape(x.shape().begin(), x.shape().end() - 2);
int total = int total =
std::reduce(shape.begin(), shape.end(), 1, std::multiplies<int>()); std::reduce(shape.begin(), shape.end(), 1, std::multiplies<int>());
return reshape(arange(total, uint32, s), shape, s); return reshape(arange(total, uint32, s), std::move(shape), s);
} }
std::pair<int, int> extract_quantized_matmul_dims( std::pair<int, int> extract_quantized_matmul_dims(
@ -3080,28 +3080,64 @@ array take_along_axis(
// Allow negative axis // Allow negative axis
axis = axis < 0 ? a.ndim() + axis : axis; axis = axis < 0 ? a.ndim() + axis : axis;
std::vector<array> nd_indices; // Broadcast indices and input ignoring the take axis
Shape index_shape(a.ndim(), 1); auto inputs = broadcast_arrays({a, indices}, {axis - int(a.ndim())}, s);
for (int i = 0; i < a.ndim(); ++i) {
if (i == axis) {
nd_indices.push_back(indices);
} else {
// Reshape so they can be broadcast
index_shape[i] = a.shape(i);
nd_indices.push_back(reshape(arange(a.shape(i), s), index_shape, s));
index_shape[i] = 1;
}
}
std::vector<int> dims(a.ndim());
std::iota(dims.begin(), dims.end(), 0);
Shape slice_sizes(a.ndim(), 1);
auto out = gather(a, nd_indices, dims, slice_sizes, s);
// Squeeze out the slice shape auto out_shape = inputs[1].shape();
for (auto& d : dims) { return array(
d += a.ndim(); std::move(out_shape),
a.dtype(),
std::make_shared<GatherAxis>(to_stream(s), axis),
std::move(inputs));
}
array scatter_axis(
const array& a,
const array& indices,
const array& values,
int axis,
ScatterAxis::ReduceType mode,
StreamOrDevice s) {
std::string prefix =
(mode == ScatterAxis::None) ? "[put_along_axis]" : "[scatter_add_axis]";
if (axis + a.ndim() < 0 || axis >= static_cast<int>(a.ndim())) {
std::ostringstream msg;
msg << prefix << " Received invalid axis " << " for array with " << a.ndim()
<< " dimensions.";
throw std::invalid_argument(msg.str());
} }
return squeeze(out, dims, s);
if (indices.ndim() != a.ndim()) {
std::ostringstream msg;
msg << prefix << " Indices of dimension " << indices.ndim()
<< " does not match array of dimension " << a.ndim() << ".";
throw std::invalid_argument(msg.str());
}
auto upd = astype(values, a.dtype(), s);
// Squeeze leading singletons out of update
if (upd.ndim() > indices.ndim()) {
std::vector<int> sq_ax(upd.ndim() - indices.ndim());
std::iota(sq_ax.begin(), sq_ax.end(), 0);
upd = squeeze(upd, sq_ax, s);
}
auto inputs = broadcast_arrays({indices, upd}, s);
inputs.insert(inputs.begin(), a);
// Allow negative axis
axis = axis < 0 ? a.ndim() + axis : axis;
// Broadcast src, indices, values while ignoring the take axis
inputs = broadcast_arrays(inputs, {axis - int(a.ndim())}, s);
auto out_shape = inputs[0].shape();
return array(
std::move(out_shape),
a.dtype(),
std::make_shared<ScatterAxis>(to_stream(s), mode, axis),
std::move(inputs));
} }
array put_along_axis( array put_along_axis(
@ -3110,45 +3146,16 @@ array put_along_axis(
const array& values, const array& values,
int axis, int axis,
StreamOrDevice s /* = {} */) { StreamOrDevice s /* = {} */) {
if (axis + a.ndim() < 0 || axis >= static_cast<int>(a.ndim())) { return scatter_axis(a, indices, values, axis, ScatterAxis::None, s);
std::ostringstream msg; }
msg << "[put_along_axis] Received invalid axis " << " for array with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (indices.ndim() != a.ndim()) { array scatter_add_axis(
std::ostringstream msg; const array& a,
msg << "[put_along_axis] Indices of dimension " << indices.ndim() const array& indices,
<< " does not match array of dimension " << a.ndim() << "."; const array& values,
throw std::invalid_argument(msg.str()); int axis,
} StreamOrDevice s /* = {} */) {
return scatter_axis(a, indices, values, axis, ScatterAxis::Sum, s);
// Allow negative axis
axis = axis < 0 ? a.ndim() + axis : axis;
std::vector<array> nd_indices;
Shape index_shape(a.ndim(), 1);
for (int i = 0; i < a.ndim(); ++i) {
if (i == axis) {
nd_indices.push_back(indices);
} else {
// Reshape so they can be broadcast
index_shape[i] = a.shape(i);
nd_indices.push_back(reshape(arange(a.shape(i), s), index_shape, s));
index_shape[i] = 1;
}
}
auto update = astype(broadcast_to(values, indices.shape(), s), a.dtype(), s);
{
auto update_shape = update.shape();
update_shape.resize(update_shape.size() + a.ndim(), 1);
update = reshape(update, std::move(update_shape), s);
}
std::vector<int> dims(a.ndim());
std::iota(dims.begin(), dims.end(), 0);
return scatter(a, nd_indices, update, dims, s);
} }
/** Scatter updates to given indices */ /** Scatter updates to given indices */
@ -3157,8 +3164,8 @@ array scatter(
const std::vector<array>& indices, const std::vector<array>& indices,
const array& updates, const array& updates,
const std::vector<int>& axes, const std::vector<int>& axes,
Scatter::ReduceType mode /*= Scatter::ReduceType::None*/, Scatter::ReduceType mode,
StreamOrDevice s /*= {}*/) { StreamOrDevice s) {
// Checks that indices, dimensions, and slice_sizes are all valid // Checks that indices, dimensions, and slice_sizes are all valid
if (indices.size() > a.ndim()) { if (indices.size() > a.ndim()) {
std::ostringstream msg; std::ostringstream msg;
@ -3962,6 +3969,19 @@ array gather_qmm(
std::tie(lhs_indices, rhs_indices) = std::tie(lhs_indices, rhs_indices) =
broadcast_arrays(lhs_indices, rhs_indices, s); broadcast_arrays(lhs_indices, rhs_indices, s);
if (!issubdtype(lhs_indices.dtype(), integer)) {
throw std::invalid_argument(
"[gather_qmm] Got lhs_indices with invalid dtype. Indices must be integral.");
}
if (!issubdtype(rhs_indices.dtype(), integer)) {
throw std::invalid_argument(
"[gather_qmm] Got rhs_indices with invalid dtype. Indices must be integral.");
}
lhs_indices = astype(lhs_indices, uint32, s);
rhs_indices = astype(rhs_indices, uint32, s);
// Compute the full output shape // Compute the full output shape
auto out_shape = lhs_indices.shape(); auto out_shape = lhs_indices.shape();
out_shape.push_back(x.shape(-2)); out_shape.push_back(x.shape(-2));

View File

@ -968,6 +968,14 @@ array put_along_axis(
int axis, int axis,
StreamOrDevice s = {}); StreamOrDevice s = {});
/** Add the values into the array at the given indices along the axis */
array scatter_add_axis(
const array& a,
const array& indices,
const array& values,
int axis,
StreamOrDevice s = {});
/** Scatter updates to the given indices. /** Scatter updates to the given indices.
* *
* The parameters ``indices`` and ``axes`` determine the locations of ``a`` * The parameters ``indices`` and ``axes`` determine the locations of ``a``

View File

@ -2098,6 +2098,77 @@ bool Gather::is_equivalent(const Primitive& other) const {
return axes_ == g_other.axes_ && slice_sizes_ == g_other.slice_sizes_; return axes_ == g_other.axes_ && slice_sizes_ == g_other.slice_sizes_;
} }
std::pair<std::vector<array>, std::vector<int>> GatherAxis::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
bool vmap_in = axes[0] >= 0;
bool vmap_idx = axes[1] >= 0;
auto in = inputs[0];
auto idx = inputs[1];
int out_ax;
if (vmap_in && vmap_idx) {
// reorder the vmap axes to the same location
idx = moveaxis(idx, axes[1], axes[0], stream());
out_ax = axes[0];
} else if (vmap_in) {
// expand just the indices dimension
idx = expand_dims(idx, axes[0], stream());
out_ax = axes[0];
} else if (vmap_idx) {
// expand just the input dimension
in = expand_dims(in, axes[1], stream());
out_ax = axes[1];
} else {
out_ax = -1;
}
int axis = (out_ax >= 0 && axis_ >= out_ax) ? axis_ + 1 : axis_;
return {{take_along_axis(in, idx, axis, stream())}, {out_ax}};
}
std::vector<array> GatherAxis::vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>&) {
std::vector<array> vjps;
for (int argnum : argnums) {
if (argnum > 0) {
// Grads w.r.t. indices are zero
vjps.push_back(
zeros(primals[argnum].shape(), primals[argnum].dtype(), stream()));
} else {
auto src = zeros_like(primals[0], stream());
vjps.push_back(array(
src.shape(),
src.dtype(),
std::make_shared<ScatterAxis>(stream(), ScatterAxis::Sum, axis_),
{src, primals[1], cotangents[0]}));
}
}
return vjps;
}
std::vector<array> GatherAxis::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
if (argnums.size() > 1 || argnums[0] != 0) {
throw std::invalid_argument(
"[gather_axis] Cannot calculate JVP with respect to indices.");
}
return {take_along_axis(tangents[0], primals[1], axis_, stream())};
}
std::vector<Shape> GatherAxis::output_shapes(const std::vector<array>& inputs) {
return {inputs[1].shape()};
}
bool GatherAxis::is_equivalent(const Primitive& other) const {
auto& g_other = static_cast<const GatherAxis&>(other);
return axis_ == g_other.axis_;
}
std::vector<Shape> Gather::output_shapes(const std::vector<array>& inputs) { std::vector<Shape> Gather::output_shapes(const std::vector<array>& inputs) {
Shape out_shape; Shape out_shape;
if (inputs.size() > 1) { if (inputs.size() > 1) {
@ -3621,6 +3692,117 @@ std::pair<std::vector<array>, std::vector<int>> Scatter::vmap(
return {{out}, {src_ax}}; return {{out}, {src_ax}};
} }
std::vector<array> ScatterAxis::vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>&) {
const auto& indices = primals[1];
const auto& updates = primals[2];
std::vector<array> vjps;
for (auto num : argnums) {
// Gradient wrt to the input array
if (num == 0) {
if (reduce_type_ == ScatterAxis::None) {
// Scatter 0s to the locations that were updated with the updates
vjps.push_back(put_along_axis(
cotangents[0],
indices,
zeros_like(updates, stream()),
axis_,
stream()));
} else {
// The input array values are kept so they all get gradients
vjps.push_back(cotangents[0]);
}
} else if (num == 2) {
vjps.push_back(take_along_axis(cotangents[0], indices, axis_, stream()));
} else {
throw std::invalid_argument(
"[scatter_axis] Cannot calculate VJP with respect to indices.");
}
}
return vjps;
}
std::vector<array> ScatterAxis::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
for (auto arg : argnums) {
if (arg == 1) {
throw std::invalid_argument(
"[scatter_axis] Cannot calculate JVP with respect to indices.");
}
}
if (argnums.size() == 2) {
return {array(
primals[0].shape(),
primals[0].dtype(),
std::make_shared<ScatterAxis>(stream(), reduce_type_, axis_),
{tangents[0], primals[1], tangents[1]})};
} else {
auto tan_a =
argnums[0] == 0 ? tangents[0] : zeros_like(primals[0], stream());
auto tan_b =
argnums[0] == 2 ? tangents[0] : zeros_like(primals[2], stream());
return {array(
primals[0].shape(),
primals[0].dtype(),
std::make_shared<ScatterAxis>(stream(), reduce_type_, axis_),
{tan_a, primals[1], tan_b})};
}
}
std::pair<std::vector<array>, std::vector<int>> ScatterAxis::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
// Find the first vmap axis
int out_ax = -1;
for (auto ax : axes) {
if (ax >= 0) {
out_ax = ax;
break;
}
}
if (out_ax < 0) {
return {
{array(
inputs[0].shape(),
inputs[0].dtype(),
std::make_shared<ScatterAxis>(stream(), reduce_type_, axis_),
inputs)},
{-1}};
}
auto v_in = inputs;
for (int i = 0; i < axes.size(); ++i) {
if (axes[i] >= 0) {
// if out_ax >= 0 move axis o/w set out_ax
if (out_ax != axes[i]) {
v_in[i] = moveaxis(v_in[i], axes[i], out_ax, stream());
}
} else {
v_in[i] = expand_dims(v_in[i], out_ax, stream());
}
}
int axis = axis_ >= out_ax ? axis_ + 1 : axis_;
auto fn = reduce_type_ == Sum ? scatter_add_axis : put_along_axis;
return {{fn(v_in[0], v_in[1], v_in[2], axis, stream())}, {out_ax}};
}
std::vector<Shape> ScatterAxis::output_shapes(
const std::vector<array>& inputs) {
return {inputs[0].shape()};
}
bool ScatterAxis::is_equivalent(const Primitive& other) const {
auto& s_other = static_cast<const ScatterAxis&>(other);
return reduce_type_ == s_other.reduce_type_ && axis_ == s_other.axis_;
}
std::vector<array> Sigmoid::vjp( std::vector<array> Sigmoid::vjp(
const std::vector<array>& primals, const std::vector<array>& primals,
const std::vector<array>& cotangents, const std::vector<array>& cotangents,

View File

@ -1095,6 +1095,27 @@ class Gather : public UnaryPrimitive {
Shape slice_sizes_; Shape slice_sizes_;
}; };
class GatherAxis : public UnaryPrimitive {
public:
explicit GatherAxis(Stream stream, int axis)
: UnaryPrimitive(stream), axis_(axis) {}
void eval_cpu(const std::vector<array>& inputs, array& out) override;
void eval_gpu(const std::vector<array>& inputs, array& out) override;
DEFINE_VMAP()
DEFINE_GRADS()
DEFINE_PRINT(GatherAxis)
bool is_equivalent(const Primitive& other) const override;
std::vector<Shape> output_shapes(const std::vector<array>& inputs) override;
auto state() const {
return axis_;
}
private:
int axis_;
};
class Greater : public UnaryPrimitive { class Greater : public UnaryPrimitive {
public: public:
explicit Greater(Stream stream) : UnaryPrimitive(stream) {} explicit Greater(Stream stream) : UnaryPrimitive(stream) {}
@ -1786,6 +1807,41 @@ class Scatter : public UnaryPrimitive {
std::vector<int> axes_; std::vector<int> axes_;
}; };
class ScatterAxis : public UnaryPrimitive {
public:
enum ReduceType { Sum, None };
explicit ScatterAxis(Stream stream, ReduceType reduce_type, int axis)
: UnaryPrimitive(stream), reduce_type_(reduce_type), axis_(axis) {}
void eval_cpu(const std::vector<array>& inputs, array& out) override;
void eval_gpu(const std::vector<array>& inputs, array& out) override;
DEFINE_VMAP()
DEFINE_GRADS()
void print(std::ostream& os) override {
os << "ScatterAxis";
switch (reduce_type_) {
case Sum:
os << " Sum";
break;
case None:
break;
}
}
bool is_equivalent(const Primitive& other) const override;
std::vector<Shape> output_shapes(const std::vector<array>& inputs) override;
std::pair<ReduceType, int> state() const {
return {reduce_type_, axis_};
}
private:
ReduceType reduce_type_;
int axis_;
};
class Sigmoid : public UnaryPrimitive { class Sigmoid : public UnaryPrimitive {
public: public:
explicit Sigmoid(Stream stream) : UnaryPrimitive(stream) {} explicit Sigmoid(Stream stream) : UnaryPrimitive(stream) {}

View File

@ -669,6 +669,37 @@ class TestAutograd(mlx_tests.MLXTestCase):
_, (expected,) = mx.jvp(lambda c: mx.addmm(c, a, b), (c,), (z,)) _, (expected,) = mx.jvp(lambda c: mx.addmm(c, a, b), (c,), (z,))
self.assertTrue(mx.allclose(tangent, expected)) self.assertTrue(mx.allclose(tangent, expected))
def test_put_along_axis_grads(self):
a = mx.zeros((5, 1))
b = mx.ones((2, 1))
def fun(a, b):
idx = mx.array([[0], [3]])
return mx.put_along_axis(a, idx, b, axis=0)
# Test VJP
cotan = mx.full((5, 1), 2.0)
_, (da, db) = mx.vjp(fun, (a, b), (cotan,))
expected_da = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
expected_db = mx.array([2.0, 2.0])[:, None]
self.assertTrue(mx.allclose(expected_da, da))
self.assertTrue(mx.allclose(expected_db, db))
# Test JVP
tan_a = mx.full((5, 1), 2.0)
tan_b = mx.full((2, 1), 3.0)
_, (jout,) = mx.jvp(fun, (a, b), (tan_a, tan_b))
expected = mx.array([3.0, 2.0, 2.0, 3.0, 2.0])[:, None]
self.assertTrue(mx.allclose(expected, jout))
def fun(a):
idx = mx.array([[0], [3]])
return mx.put_along_axis(a, idx, b, axis=0)
_, (jout,) = mx.jvp(fun, (a,), (tan_a,))
expected = mx.array([0.0, 2.0, 2.0, 0.0, 2.0])[:, None]
self.assertTrue(mx.allclose(expected, jout))
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()

View File

@ -1150,6 +1150,15 @@ class TestOps(mlx_tests.MLXTestCase):
out_mlx = mx.put_along_axis(a_mlx, idx_mlx, values_mlx, axis=ax) out_mlx = mx.put_along_axis(a_mlx, idx_mlx, values_mlx, axis=ax)
self.assertTrue(np.array_equal(a_np, out_mlx)) self.assertTrue(np.array_equal(a_np, out_mlx))
source = mx.zeros((1, 1, 8, 32))
indices = mx.array([0, 2, 4, 5]).reshape((1, 1, 4, 1))
update = mx.array(1.0)
out_mlx = mx.put_along_axis(source, indices, update, axis=-2)
out_np = np.array(source)
np.put_along_axis(out_np, np.array(indices), np.array(update), axis=-2)
self.assertTrue(np.array_equal(out_np, np.array(out_mlx)))
def test_split(self): def test_split(self):
a = mx.array([1, 2, 3]) a = mx.array([1, 2, 3])
splits = mx.split(a, 3) splits = mx.split(a, 3)

View File

@ -549,6 +549,53 @@ class TestVmap(mlx_tests.MLXTestCase):
target = mx.concatenate([x, mx.ones((2, 2, 1))], axis=2) target = mx.concatenate([x, mx.ones((2, 2, 1))], axis=2)
self.assertTrue(mx.array_equal(out, target)) self.assertTrue(mx.array_equal(out, target))
def test_vmap_take_along_axis(self):
a = mx.zeros((4, 5, 1))
idx = mx.zeros((2, 4, 1), mx.int32)
def fun(a, idx):
return mx.take_along_axis(a, idx, axis=0)
out = mx.vmap(fun, in_axes=(0, 1))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
idx = mx.zeros((2, 1), mx.int32)
out = mx.vmap(fun, in_axes=(0, None))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
a = mx.zeros((5, 1))
idx = mx.zeros((4, 2, 1), mx.int32)
out = mx.vmap(fun, in_axes=(None, 0))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
def test_vmap_put_along_axis(self):
a = mx.zeros((4, 5, 1))
idx = mx.ones((2, 4, 1), mx.int32)
upd = mx.ones((2, 4, 1))
def fun(a, idx, upd):
return mx.put_along_axis(a, idx, upd, axis=0)
out = mx.vmap(fun, in_axes=(0, 1, 1))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
upd = mx.ones((2, 1))
out = mx.vmap(fun, in_axes=(0, 1, None))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
idx = mx.ones((2, 1), mx.int32)
upd = mx.ones((2, 1))
out = mx.vmap(fun, in_axes=(0, None, None))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
a = mx.zeros((5, 1))
idx = mx.ones((2, 4, 1), mx.int32)
upd = mx.ones((2, 4, 1))
out = mx.vmap(fun, in_axes=(None, 1, 1))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()