GGUF support (#350)

* Initial GGUF support for tensor fields.

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Juarez Bochi 2024-01-10 16:22:48 -05:00 committed by GitHub
parent e3e933c6bc
commit b7f905787e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 362 additions and 55 deletions

View File

@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.24)
project(mlx LANGUAGES CXX)
project(mlx LANGUAGES C CXX)
# ----------------------------- Setup -----------------------------
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
@ -98,15 +98,6 @@ elseif (MLX_BUILD_METAL)
${QUARTZ_LIB})
endif()
MESSAGE(STATUS "Downloading json")
FetchContent_Declare(json URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz)
FetchContent_MakeAvailable(json)
target_include_directories(
mlx PUBLIC
$<BUILD_INTERFACE:${json_SOURCE_DIR}/single_include/nlohmann>
$<INSTALL_INTERFACE:include/json>
)
find_library(ACCELERATE_LIBRARY Accelerate)
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")

View File

@ -89,6 +89,7 @@ Operations
save
savez
savez_compressed
save_gguf
save_safetensors
sigmoid
sign

View File

@ -3,4 +3,31 @@ target_sources(
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/safetensor.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gguf.cpp
)
MESSAGE(STATUS "Downloading json")
FetchContent_Declare(json URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz)
FetchContent_MakeAvailable(json)
target_include_directories(
mlx PUBLIC
$<BUILD_INTERFACE:${json_SOURCE_DIR}/single_include/nlohmann>
$<INSTALL_INTERFACE:include/json>
)
MESSAGE(STATUS "Downloading gguflib")
FetchContent_Declare(gguflib
GIT_REPOSITORY https://github.com/antirez/gguf-tools/
GIT_TAG af7d88d808a7608a33723fba067036202910acb3
)
FetchContent_MakeAvailable(gguflib)
target_include_directories(
mlx PUBLIC
$<BUILD_INTERFACE:${gguflib_SOURCE_DIR}>
$<INSTALL_INTERFACE:include/gguflib>
)
add_library(
gguflib SHARED
${gguflib_SOURCE_DIR}/fp16.c
${gguflib_SOURCE_DIR}/gguflib.c)
target_link_libraries(mlx $<BUILD_INTERFACE:gguflib>)

163
mlx/io/gguf.cpp Normal file
View File

@ -0,0 +1,163 @@
// Copyright © 2023 Apple Inc.
#include "mlx/ops.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
extern "C" {
#include <gguflib.h>
}
namespace mlx::core {
std::optional<uint32_t> dtype_to_gguf_tensor_type(const Dtype& dtype) {
switch (dtype) {
case float32:
return GGUF_TYPE_F32;
case float16:
return GGUF_TYPE_F16;
case int8:
return GGUF_TYPE_I8;
case int16:
return GGUF_TYPE_I16;
case int32:
return GGUF_TYPE_I32;
default:
return {};
}
}
std::optional<Dtype> gguf_type_to_dtype(const uint32_t& gguf_type) {
switch (gguf_type) {
case GGUF_TYPE_F32:
return float32;
case GGUF_TYPE_F16:
return float16;
case GGUF_TYPE_I8:
return int8;
case GGUF_TYPE_I16:
return int16;
case GGUF_TYPE_I32:
return int32;
default:
return {};
}
}
std::tuple<allocator::Buffer, Dtype> extract_tensor_data(gguf_tensor* tensor) {
std::optional<Dtype> equivalent_dtype = gguf_type_to_dtype(tensor->type);
// If there's an equivalent type, we can simply copy.
if (equivalent_dtype.has_value()) {
allocator::Buffer buffer = allocator::malloc(tensor->bsize);
memcpy(
buffer.raw_ptr(),
tensor->weights_data,
tensor->num_weights * equivalent_dtype.value().size);
return {buffer, equivalent_dtype.value()};
}
// Otherwise, we convert to float16.
// TODO: Add other dequantization options.
int16_t* data = gguf_tensor_to_f16(tensor);
if (data == NULL) {
throw std::runtime_error("[load_gguf] gguf_tensor_to_f16 failed");
}
const size_t new_size = tensor->num_weights * sizeof(int16_t);
allocator::Buffer buffer = allocator::malloc(new_size);
memcpy(buffer.raw_ptr(), data, new_size);
free(data);
return {buffer, float16};
}
std::unordered_map<std::string, array> load_gguf(
const std::string& file,
StreamOrDevice s) {
std::unordered_map<std::string, array> result;
gguf_ctx* ctx = gguf_open(file.c_str());
if (!ctx) {
throw std::runtime_error("[load_gguf] gguf_init failed");
}
gguf_skip_key_values_section(ctx);
gguf_tensor tensor;
while (gguf_get_tensor(ctx, &tensor)) {
std::vector<int> shape;
// The dimension order in GGML is the reverse of the order used in MLX.
for (int i = tensor.ndim - 1; i >= 0; i--) {
shape.push_back(tensor.dim[i]);
}
const auto& [data, dtype] = extract_tensor_data(&tensor);
array loaded_array = array(data, shape, dtype);
std::string name = std::string(tensor.name, tensor.namelen);
result.insert({name, loaded_array});
}
gguf_close(ctx);
return result;
}
void save_gguf(std::string file, std::unordered_map<std::string, array> a) {
// Add .gguf to file name if it is not there
if (file.length() < 5 || file.substr(file.length() - 5, 5) != ".gguf") {
file += ".gguf";
}
gguf_ctx* ctx = gguf_create(file.c_str(), GGUF_OVERWRITE);
if (!ctx) {
throw std::runtime_error("[save_gguf] gguf_create failed");
}
// Tensor offsets are relative to data section, so we start at offset 0.
uint64_t tensor_offset = 0;
// First, append the tensor info
for (auto& [key, arr] : a) {
arr.eval();
// Try to make it row contiguous
if (!arr.flags().row_contiguous) {
arr = reshape(flatten(arr), arr.shape());
arr.eval();
}
// Has to be row-major now but, check one more time in case
// any of the above change in the future
if (!arr.flags().row_contiguous) {
throw std::invalid_argument(
"[save_gguf] can only serialize row-major arrays");
}
tensor_offset += gguf_get_alignment_padding(ctx->alignment, tensor_offset);
const std::optional<uint32_t> gguf_type =
dtype_to_gguf_tensor_type(arr.dtype());
if (!gguf_type.has_value()) {
std::ostringstream msg;
msg << "[save_gguf] dtype " << arr.dtype() << " is not supported";
throw std::runtime_error(msg.str());
}
const char* tensorname = key.c_str();
const uint64_t namelen = key.length();
const uint32_t num_dim = arr.ndim();
uint64_t dim[num_dim];
for (int i = 0; i < num_dim; i++) {
dim[i] = arr.shape()[num_dim - 1 - i];
}
if (!gguf_append_tensor_info(
ctx,
tensorname,
namelen,
num_dim,
dim,
gguf_type.value(),
tensor_offset)) {
throw std::runtime_error("[save_gguf] gguf_append_tensor_info failed");
}
tensor_offset += arr.nbytes();
}
// Then, append the tensor weights
for (const auto& [key, arr] : a) {
if (!gguf_append_tensor_data(ctx, (void*)arr.data<void>(), arr.nbytes())) {
throw std::runtime_error("[save_gguf] gguf_append_tensor_data failed");
}
}
gguf_close(ctx);
}
} // namespace mlx::core

View File

@ -1,7 +1,32 @@
#include "mlx/io/safetensor.h"
// Copyright © 2023 Apple Inc.
//
#include <json.hpp>
#include <stack>
#include "mlx/io/load.h"
#include "mlx/ops.h"
#include "mlx/primitives.h"
using json = nlohmann::json;
#define ST_F16 "F16"
#define ST_BF16 "BF16"
#define ST_F32 "F32"
#define ST_BOOL "BOOL"
#define ST_I8 "I8"
#define ST_I16 "I16"
#define ST_I32 "I32"
#define ST_I64 "I64"
#define ST_U8 "U8"
#define ST_U16 "U16"
#define ST_U32 "U32"
#define ST_U64 "U64"
// Note: Complex numbers aren't in the spec yet so this could change -
// https://github.com/huggingface/safetensors/issues/389
#define ST_C64 "C64"
namespace mlx::core {
std::string dtype_to_safetensor_str(Dtype t) {

View File

@ -1,32 +0,0 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <json.hpp>
#include "mlx/io/load.h"
#include "mlx/ops.h"
#include "mlx/primitives.h"
using json = nlohmann::json;
namespace mlx::core {
#define ST_F16 "F16"
#define ST_BF16 "BF16"
#define ST_F32 "F32"
#define ST_BOOL "BOOL"
#define ST_I8 "I8"
#define ST_I16 "I16"
#define ST_I32 "I32"
#define ST_I64 "I64"
#define ST_U8 "U8"
#define ST_U16 "U16"
#define ST_U32 "U32"
#define ST_U64 "U64"
// Note: Complex numbers aren't in the spec yet so this could change -
// https://github.com/huggingface/safetensors/issues/389
#define ST_C64 "C64"
} // namespace mlx::core

View File

@ -1104,4 +1104,12 @@ void save_safetensors(
void save_safetensors(
const std::string& file,
std::unordered_map<std::string, array>);
/** Load array map from .gguf file format */
std::unordered_map<std::string, array> load_gguf(
const std::string& file,
StreamOrDevice s = {});
void save_gguf(std::string file, std::unordered_map<std::string, array> a);
} // namespace mlx::core

View File

@ -181,6 +181,16 @@ std::unordered_map<std::string, array> mlx_load_safetensor_helper(
"[load_safetensors] Input must be a file-like object, or string");
}
std::unordered_map<std::string, array> mlx_load_gguf_helper(
py::object file,
StreamOrDevice s) {
if (py::isinstance<py::str>(file)) { // Assume .gguf file path string
return load_gguf(py::cast<std::string>(file), s);
}
throw std::invalid_argument("[load_gguf] Input must be a string");
}
std::unordered_map<std::string, array> mlx_load_npz_helper(
py::object file,
StreamOrDevice s) {
@ -264,6 +274,8 @@ DictOrArray mlx_load_helper(
return mlx_load_npz_helper(file, s);
} else if (format.value() == "npy") {
return mlx_load_npy_helper(file, s);
} else if (format.value() == "gguf") {
return mlx_load_gguf_helper(file, s);
} else {
throw std::invalid_argument("[load] Unknown file format " + format.value());
}
@ -435,3 +447,13 @@ void mlx_save_safetensor_helper(py::object file, py::dict d) {
throw std::invalid_argument(
"[save_safetensors] Input must be a file-like object, or string");
}
void mlx_save_gguf_helper(py::object file, py::dict d) {
auto arrays_map = d.cast<std::unordered_map<std::string, array>>();
if (py::isinstance<py::str>(file)) {
save_gguf(py::cast<std::string>(file), arrays_map);
return;
}
throw std::invalid_argument("[save_safetensors] Input must be a string");
}

View File

@ -19,6 +19,11 @@ std::unordered_map<std::string, array> mlx_load_safetensor_helper(
StreamOrDevice s);
void mlx_save_safetensor_helper(py::object file, py::dict d);
std::unordered_map<std::string, array> mlx_load_gguf_helper(
py::object file,
StreamOrDevice s);
void mlx_save_gguf_helper(py::object file, py::dict d);
DictOrArray mlx_load_helper(
py::object file,
std::optional<std::string> format,

View File

@ -3048,7 +3048,9 @@ void init_ops(py::module_& m) {
R"pbdoc(
load(file: str, /, format: Optional[str] = None, *, stream: Union[None, Stream, Device] = None) -> Union[array, Dict[str, array]]
Load array(s) from a binary file in ``.npy``, ``.npz``, or ``.safetensors`` format.
Load array(s) from a binary file.
The supported formats are ``.npy``, ``.npz``, ``.safetensors``, and ``.gguf``.
Args:
file (file, str): File in which the array is saved.
@ -3059,6 +3061,12 @@ void init_ops(py::module_& m) {
result (array, dict):
A single array if loading from a ``.npy`` file or a dict mapping
names to arrays if loading from a ``.npz`` or ``.safetensors`` file.
Warning:
When loading unsupported quantization formats from GGUF, tensors will
automatically cast to ``mx.float16``
)pbdoc");
m.def(
"save_safetensors",
@ -3070,10 +3078,28 @@ void init_ops(py::module_& m) {
Save array(s) to a binary file in ``.safetensors`` format.
For more information on the format see https://huggingface.co/docs/safetensors/index.
See the `Safetensors documentation <https://huggingface.co/docs/safetensors/index>`_
for more information on the format.
Args:
file (file, str): File in which the array is saved>
file (file, str): File in which the array is saved.
arrays (dict(str, array)): The dictionary of names to arrays to be saved.
)pbdoc");
m.def(
"save_gguf",
&mlx_save_gguf_helper,
"file"_a,
"arrays"_a,
R"pbdoc(
save_gguf(file: str, arrays: Dict[str, array])
Save array(s) to a binary file in ``.gguf`` format.
See the `GGUF documentation <https://github.com/ggerganov/ggml/blob/master/docs/gguf.md>`_ for
more information on the format.
Args:
file (file, str): File in which the array is saved.
arrays (dict(str, array)): The dictionary of names to arrays to be saved.
)pbdoc");
m.def(
@ -3306,7 +3332,7 @@ void init_ops(py::module_& m) {
``dims`` dimensions of ``a`` and the first ``dims`` dimensions of
``b``. If a list of lists is provided, then sum over the
corresponding dimensions of ``a`` and ``b``. (default: 2)
Returns:
result (array): The tensor dot product.
)pbdoc");

View File

@ -90,6 +90,33 @@ class TestLoad(mlx_tests.MLXTestCase):
mx.array_equal(load_dict["test"], save_dict["test"])
)
def test_save_and_load_gguf(self):
if not os.path.isdir(self.test_dir):
os.mkdir(self.test_dir)
# TODO: Add support for other dtypes (self.dtypes + ["bfloat16"])
supported_dtypes = ["float16", "float32", "int8", "int16", "int32"]
for dt in supported_dtypes:
with self.subTest(dtype=dt):
for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
with self.subTest(shape=shape):
save_file_mlx = os.path.join(
self.test_dir, f"mlx_{dt}_{i}_fs.gguf"
)
save_dict = {
"test": mx.random.normal(shape=shape, dtype=getattr(mx, dt))
if dt in ["float32", "float16", "bfloat16"]
else mx.ones(shape, dtype=getattr(mx, dt))
}
mx.save_gguf(save_file_mlx, save_dict)
load_dict = mx.load(save_file_mlx)
self.assertTrue("test" in load_dict)
self.assertTrue(
mx.array_equal(load_dict["test"], save_dict["test"])
)
def test_save_and_load_fs(self):
if not os.path.isdir(self.test_dir):
os.mkdir(self.test_dir)
@ -194,13 +221,24 @@ class TestLoad(mlx_tests.MLXTestCase):
aload = mx.load(save_file)["a"]
self.assertTrue(mx.array_equal(a, aload))
# safetensors only works with row contiguous
save_file = os.path.join(self.test_dir, "a.gguf")
mx.save_gguf(save_file, {"a": a})
aload = mx.load(save_file)["a"]
self.assertTrue(mx.array_equal(a, aload))
# safetensors and gguf only work with row contiguous
# make sure col contiguous is handled properly
save_file = os.path.join(self.test_dir, "a.safetensors")
a = mx.arange(4).reshape(2, 2).T
mx.save_safetensors(save_file, {"a": a})
aload = mx.load(save_file)["a"]
self.assertTrue(mx.array_equal(a, aload))
save_file = os.path.join(self.test_dir, "a.gguf")
mx.save_gguf(save_file, {"a": a})
aload = mx.load(save_file)["a"]
self.assertTrue(mx.array_equal(a, aload))
if __name__ == "__main__":
unittest.main()

View File

@ -20,20 +20,53 @@ TEST_CASE("test save_safetensors") {
map.insert({"test", array({1.0, 2.0, 3.0, 4.0})});
map.insert({"test2", ones({2, 2})});
save_safetensors(file_path, map);
auto safeDict = load_safetensors(file_path);
CHECK_EQ(safeDict.size(), 2);
CHECK_EQ(safeDict.count("test"), 1);
CHECK_EQ(safeDict.count("test2"), 1);
array test = safeDict.at("test");
auto dict = load_safetensors(file_path);
CHECK_EQ(dict.size(), 2);
CHECK_EQ(dict.count("test"), 1);
CHECK_EQ(dict.count("test2"), 1);
array test = dict.at("test");
CHECK_EQ(test.dtype(), float32);
CHECK_EQ(test.shape(), std::vector<int>({4}));
CHECK(array_equal(test, array({1.0, 2.0, 3.0, 4.0})).item<bool>());
array test2 = safeDict.at("test2");
array test2 = dict.at("test2");
CHECK_EQ(test2.dtype(), float32);
CHECK_EQ(test2.shape(), std::vector<int>({2, 2}));
CHECK(array_equal(test2, ones({2, 2})).item<bool>());
}
TEST_CASE("test gguf") {
std::string file_path = get_temp_file("test_arr.gguf");
using dict = std::unordered_map<std::string, array>;
dict map = {
{"test", array({1.0f, 2.0f, 3.0f, 4.0f})},
{"test2", reshape(arange(6), {3, 2})}};
save_gguf(file_path, map);
auto loaded = load_gguf(file_path);
CHECK_EQ(loaded.size(), 2);
CHECK_EQ(loaded.count("test"), 1);
CHECK_EQ(loaded.count("test2"), 1);
for (auto [k, v] : loaded) {
CHECK(array_equal(v, map.at(k)).item<bool>());
}
std::vector<Dtype> unsupported_types = {
bool_, uint8, uint32, uint64, int64, bfloat16, complex64};
for (auto t : unsupported_types) {
dict to_save = {{"test", astype(arange(5), t)}};
CHECK_THROWS(save_gguf(file_path, to_save));
}
std::vector<Dtype> supported_types = {int8, int32, float16};
for (auto t : supported_types) {
auto arr = astype(arange(5), t);
dict to_save = {{"test", arr}};
save_gguf(file_path, to_save);
auto loaded = load_gguf(file_path);
CHECK(array_equal(loaded.at("test"), arr).item<bool>());
}
}
TEST_CASE("test single array serialization") {
// Basic test
{