GGUF support (#350)

* Initial GGUF support for tensor fields.

---------

Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
Juarez Bochi
2024-01-10 16:22:48 -05:00
committed by GitHub
parent e3e933c6bc
commit b7f905787e
12 changed files with 362 additions and 55 deletions

View File

@@ -3,4 +3,31 @@ target_sources(
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/safetensor.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gguf.cpp
)
MESSAGE(STATUS "Downloading json")
FetchContent_Declare(json URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz)
FetchContent_MakeAvailable(json)
target_include_directories(
mlx PUBLIC
$<BUILD_INTERFACE:${json_SOURCE_DIR}/single_include/nlohmann>
$<INSTALL_INTERFACE:include/json>
)
MESSAGE(STATUS "Downloading gguflib")
FetchContent_Declare(gguflib
GIT_REPOSITORY https://github.com/antirez/gguf-tools/
GIT_TAG af7d88d808a7608a33723fba067036202910acb3
)
FetchContent_MakeAvailable(gguflib)
target_include_directories(
mlx PUBLIC
$<BUILD_INTERFACE:${gguflib_SOURCE_DIR}>
$<INSTALL_INTERFACE:include/gguflib>
)
add_library(
gguflib SHARED
${gguflib_SOURCE_DIR}/fp16.c
${gguflib_SOURCE_DIR}/gguflib.c)
target_link_libraries(mlx $<BUILD_INTERFACE:gguflib>)

163
mlx/io/gguf.cpp Normal file
View File

@@ -0,0 +1,163 @@
// Copyright © 2023 Apple Inc.
#include "mlx/ops.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
extern "C" {
#include <gguflib.h>
}
namespace mlx::core {
std::optional<uint32_t> dtype_to_gguf_tensor_type(const Dtype& dtype) {
switch (dtype) {
case float32:
return GGUF_TYPE_F32;
case float16:
return GGUF_TYPE_F16;
case int8:
return GGUF_TYPE_I8;
case int16:
return GGUF_TYPE_I16;
case int32:
return GGUF_TYPE_I32;
default:
return {};
}
}
std::optional<Dtype> gguf_type_to_dtype(const uint32_t& gguf_type) {
switch (gguf_type) {
case GGUF_TYPE_F32:
return float32;
case GGUF_TYPE_F16:
return float16;
case GGUF_TYPE_I8:
return int8;
case GGUF_TYPE_I16:
return int16;
case GGUF_TYPE_I32:
return int32;
default:
return {};
}
}
std::tuple<allocator::Buffer, Dtype> extract_tensor_data(gguf_tensor* tensor) {
std::optional<Dtype> equivalent_dtype = gguf_type_to_dtype(tensor->type);
// If there's an equivalent type, we can simply copy.
if (equivalent_dtype.has_value()) {
allocator::Buffer buffer = allocator::malloc(tensor->bsize);
memcpy(
buffer.raw_ptr(),
tensor->weights_data,
tensor->num_weights * equivalent_dtype.value().size);
return {buffer, equivalent_dtype.value()};
}
// Otherwise, we convert to float16.
// TODO: Add other dequantization options.
int16_t* data = gguf_tensor_to_f16(tensor);
if (data == NULL) {
throw std::runtime_error("[load_gguf] gguf_tensor_to_f16 failed");
}
const size_t new_size = tensor->num_weights * sizeof(int16_t);
allocator::Buffer buffer = allocator::malloc(new_size);
memcpy(buffer.raw_ptr(), data, new_size);
free(data);
return {buffer, float16};
}
std::unordered_map<std::string, array> load_gguf(
const std::string& file,
StreamOrDevice s) {
std::unordered_map<std::string, array> result;
gguf_ctx* ctx = gguf_open(file.c_str());
if (!ctx) {
throw std::runtime_error("[load_gguf] gguf_init failed");
}
gguf_skip_key_values_section(ctx);
gguf_tensor tensor;
while (gguf_get_tensor(ctx, &tensor)) {
std::vector<int> shape;
// The dimension order in GGML is the reverse of the order used in MLX.
for (int i = tensor.ndim - 1; i >= 0; i--) {
shape.push_back(tensor.dim[i]);
}
const auto& [data, dtype] = extract_tensor_data(&tensor);
array loaded_array = array(data, shape, dtype);
std::string name = std::string(tensor.name, tensor.namelen);
result.insert({name, loaded_array});
}
gguf_close(ctx);
return result;
}
void save_gguf(std::string file, std::unordered_map<std::string, array> a) {
// Add .gguf to file name if it is not there
if (file.length() < 5 || file.substr(file.length() - 5, 5) != ".gguf") {
file += ".gguf";
}
gguf_ctx* ctx = gguf_create(file.c_str(), GGUF_OVERWRITE);
if (!ctx) {
throw std::runtime_error("[save_gguf] gguf_create failed");
}
// Tensor offsets are relative to data section, so we start at offset 0.
uint64_t tensor_offset = 0;
// First, append the tensor info
for (auto& [key, arr] : a) {
arr.eval();
// Try to make it row contiguous
if (!arr.flags().row_contiguous) {
arr = reshape(flatten(arr), arr.shape());
arr.eval();
}
// Has to be row-major now but, check one more time in case
// any of the above change in the future
if (!arr.flags().row_contiguous) {
throw std::invalid_argument(
"[save_gguf] can only serialize row-major arrays");
}
tensor_offset += gguf_get_alignment_padding(ctx->alignment, tensor_offset);
const std::optional<uint32_t> gguf_type =
dtype_to_gguf_tensor_type(arr.dtype());
if (!gguf_type.has_value()) {
std::ostringstream msg;
msg << "[save_gguf] dtype " << arr.dtype() << " is not supported";
throw std::runtime_error(msg.str());
}
const char* tensorname = key.c_str();
const uint64_t namelen = key.length();
const uint32_t num_dim = arr.ndim();
uint64_t dim[num_dim];
for (int i = 0; i < num_dim; i++) {
dim[i] = arr.shape()[num_dim - 1 - i];
}
if (!gguf_append_tensor_info(
ctx,
tensorname,
namelen,
num_dim,
dim,
gguf_type.value(),
tensor_offset)) {
throw std::runtime_error("[save_gguf] gguf_append_tensor_info failed");
}
tensor_offset += arr.nbytes();
}
// Then, append the tensor weights
for (const auto& [key, arr] : a) {
if (!gguf_append_tensor_data(ctx, (void*)arr.data<void>(), arr.nbytes())) {
throw std::runtime_error("[save_gguf] gguf_append_tensor_data failed");
}
}
gguf_close(ctx);
}
} // namespace mlx::core

View File

@@ -1,7 +1,32 @@
#include "mlx/io/safetensor.h"
// Copyright © 2023 Apple Inc.
//
#include <json.hpp>
#include <stack>
#include "mlx/io/load.h"
#include "mlx/ops.h"
#include "mlx/primitives.h"
using json = nlohmann::json;
#define ST_F16 "F16"
#define ST_BF16 "BF16"
#define ST_F32 "F32"
#define ST_BOOL "BOOL"
#define ST_I8 "I8"
#define ST_I16 "I16"
#define ST_I32 "I32"
#define ST_I64 "I64"
#define ST_U8 "U8"
#define ST_U16 "U16"
#define ST_U32 "U32"
#define ST_U64 "U64"
// Note: Complex numbers aren't in the spec yet so this could change -
// https://github.com/huggingface/safetensors/issues/389
#define ST_C64 "C64"
namespace mlx::core {
std::string dtype_to_safetensor_str(Dtype t) {

View File

@@ -1,32 +0,0 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <json.hpp>
#include "mlx/io/load.h"
#include "mlx/ops.h"
#include "mlx/primitives.h"
using json = nlohmann::json;
namespace mlx::core {
#define ST_F16 "F16"
#define ST_BF16 "BF16"
#define ST_F32 "F32"
#define ST_BOOL "BOOL"
#define ST_I8 "I8"
#define ST_I16 "I16"
#define ST_I32 "I32"
#define ST_I64 "I64"
#define ST_U8 "U8"
#define ST_U16 "U16"
#define ST_U32 "U32"
#define ST_U64 "U64"
// Note: Complex numbers aren't in the spec yet so this could change -
// https://github.com/huggingface/safetensors/issues/389
#define ST_C64 "C64"
} // namespace mlx::core

View File

@@ -1104,4 +1104,12 @@ void save_safetensors(
void save_safetensors(
const std::string& file,
std::unordered_map<std::string, array>);
/** Load array map from .gguf file format */
std::unordered_map<std::string, array> load_gguf(
const std::string& file,
StreamOrDevice s = {});
void save_gguf(std::string file, std::unordered_map<std::string, array> a);
} // namespace mlx::core