Strided scan

This commit is contained in:
Cheng
2025-07-09 10:42:05 +00:00
parent e769fcca60
commit b89d8ef1c0

View File

@@ -39,37 +39,37 @@ struct ReduceInit<LogAddExp, T> {
template <bool reverse, typename T, typename U, int N_READS> template <bool reverse, typename T, typename U, int N_READS>
inline __device__ void inline __device__ void
load_vals(int index, const T* in, U (&vals)[N_READS], int size, U init) { load_values(int index, const T* in, U (&values)[N_READS], int size, U init) {
int remaining = size - index * N_READS; int remaining = size - index * N_READS;
if constexpr (reverse) { if constexpr (reverse) {
in += remaining - N_READS; in += remaining - N_READS;
if (remaining < N_READS) { if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
vals[N_READS - i - 1] = values[N_READS - i - 1] =
(N_READS - i - 1 < remaining) ? cast_to<U>(in[i]) : init; (N_READS - i - 1 < remaining) ? cast_to<U>(in[i]) : init;
} }
} else { } else {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
vals[N_READS - i - 1] = cast_to<U>(in[i]); values[N_READS - i - 1] = cast_to<U>(in[i]);
} }
} }
} else { } else {
in += index * N_READS; in += index * N_READS;
if (remaining < N_READS) { if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
vals[i] = (i < remaining) ? cast_to<U>(in[i]) : init; values[i] = (i < remaining) ? cast_to<U>(in[i]) : init;
} }
} else { } else {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
vals[i] = cast_to<U>(in[i]); values[i] = cast_to<U>(in[i]);
} }
} }
} }
} }
template <bool reverse, typename T, int N_READS> template <bool reverse, int offset, typename T, int N_READS>
inline __device__ void inline __device__ void
store_vals(int index, T* out, T (&vals)[N_READS], int size, int offset = 0) { store_values(int index, T* out, T (&values)[N_READS], int size) {
int start = index * N_READS + offset; int start = index * N_READS + offset;
int remaining = size - start; int remaining = size - start;
if constexpr (reverse) { if constexpr (reverse) {
@@ -77,12 +77,12 @@ store_vals(int index, T* out, T (&vals)[N_READS], int size, int offset = 0) {
if (remaining < N_READS) { if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
if (N_READS - i - 1 < remaining) { if (N_READS - i - 1 < remaining) {
out[i] = vals[N_READS - i - 1]; out[i] = values[N_READS - i - 1];
} }
} }
} else { } else {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
out[i] = vals[N_READS - i - 1]; out[i] = values[N_READS - i - 1];
} }
} }
} else { } else {
@@ -90,12 +90,12 @@ store_vals(int index, T* out, T (&vals)[N_READS], int size, int offset = 0) {
if (remaining < N_READS) { if (remaining < N_READS) {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
if (i < remaining) { if (i < remaining) {
out[i] = vals[i]; out[i] = values[i];
} }
} }
} else { } else {
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
out[i] = vals[i]; out[i] = values[i];
} }
} }
} }
@@ -125,24 +125,24 @@ __global__ void contiguous_scan(const T* in, U* out, int32_t axis_size) {
// Scan per block. // Scan per block.
for (int r = 0; r < cuda::ceil_div(axis_size, block.size() * N_READS); ++r) { for (int r = 0; r < cuda::ceil_div(axis_size, block.size() * N_READS); ++r) {
int32_t index = r * block.size() + block.thread_rank(); int32_t index = r * block.size() + block.thread_rank();
U vals[N_READS]; U values[N_READS];
load_vals<reverse>(index, in, vals, axis_size, init); load_values<reverse>(index, in, values, axis_size, init);
// Compute an inclusive scan per thread. // Compute an inclusive scan per thread.
for (int i = 1; i < N_READS; i++) { for (int i = 1; i < N_READS; ++i) {
vals[i] = op(vals[i], vals[i - 1]); values[i] = op(values[i], values[i - 1]);
} }
// Compute exclusive scan of thread sums. // Compute exclusive scan of thread sums.
U prev_thread_sum = cg::exclusive_scan(warp, vals[N_READS - 1], op); U prev_thread_sum = cg::exclusive_scan(warp, values[N_READS - 1], op);
if (warp.thread_rank() == 0) { if (warp.thread_rank() == 0) {
prev_thread_sum = init; prev_thread_sum = init;
} }
// Write wrap's sum to shared memory. // Write wrap's sum to shared memory.
if (warp.thread_rank() == warp.size() - 1) { if (warp.thread_rank() == WARP_SIZE - 1) {
warp_sums[warp.meta_group_rank()] = warp_sums[warp.meta_group_rank()] =
op(prev_thread_sum, vals[N_READS - 1]); op(prev_thread_sum, values[N_READS - 1]);
} }
block.sync(); block.sync();
@@ -159,16 +159,16 @@ __global__ void contiguous_scan(const T* in, U* out, int32_t axis_size) {
// Compute the output. // Compute the output.
for (int i = 0; i < N_READS; ++i) { for (int i = 0; i < N_READS; ++i) {
vals[i] = op(vals[i], prefix); values[i] = op(values[i], prefix);
vals[i] = op(vals[i], warp_sums[warp.meta_group_rank()]); values[i] = op(values[i], warp_sums[warp.meta_group_rank()]);
vals[i] = op(vals[i], prev_thread_sum); values[i] = op(values[i], prev_thread_sum);
} }
// Write the values. // Write the values.
if (inclusive) { if (inclusive) {
store_vals<reverse>(index, out, vals, axis_size); store_values<reverse, 0>(index, out, values, axis_size);
} else { } else {
store_vals<reverse>(index, out, vals, axis_size, 1); store_values<reverse, 1>(index, out, values, axis_size);
if (reverse) { if (reverse) {
if (block.thread_rank() == 0 && index == 0) { if (block.thread_rank() == 0 && index == 0) {
out[axis_size - 1] = init; out[axis_size - 1] = init;
@@ -183,14 +183,141 @@ __global__ void contiguous_scan(const T* in, U* out, int32_t axis_size) {
// Share the prefix. // Share the prefix.
if ((warp.meta_group_rank() == warp.meta_group_size() - 1) && if ((warp.meta_group_rank() == warp.meta_group_size() - 1) &&
(warp.thread_rank() == warp.size() - 1)) { (warp.thread_rank() == WARP_SIZE - 1)) {
warp_sums[0] = vals[N_READS - 1]; warp_sums[0] = values[N_READS - 1];
} }
block.sync(); block.sync();
prefix = warp_sums[0]; prefix = warp_sums[0];
} }
} }
template <
typename T,
typename U,
typename Op,
int N_READS,
int BM,
int BN,
bool inclusive,
bool reverse>
__global__ void strided_scan(
const T* in,
U* out,
int32_t axis_size,
int64_t stride,
int64_t stride_blocks) {
auto grid = cg::this_grid();
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);
constexpr int BN_pad = WARP_SIZE + 16 / sizeof(U);
constexpr int n_warps = BN / N_READS;
constexpr int n_scans = BN / n_warps;
__shared__ U read_buffer[BM * BN_pad];
Op op;
U init = ReduceInit<Op, T>::value();
U values[n_scans];
U prefix[n_scans];
for (int i = 0; i < n_scans; ++i) {
prefix[i] = init;
}
// Compute offsets.
int64_t offset = (grid.block_rank() / stride_blocks) * axis_size * stride;
int64_t global_index_x = (grid.block_rank() % stride_blocks) * BN;
uint read_offset_y = (block.thread_rank() * N_READS) / BN;
uint read_offset_x = (block.thread_rank() * N_READS) % BN;
uint scan_offset_y = warp.thread_rank();
uint scan_offset_x = warp.meta_group_rank() * n_scans;
uint stride_limit = stride - global_index_x;
in += offset + global_index_x + read_offset_x;
out += offset + global_index_x + read_offset_x;
U* read_into = read_buffer + read_offset_y * BN_pad + read_offset_x;
U* read_from = read_buffer + scan_offset_y * BN_pad + scan_offset_x;
for (uint j = 0; j < axis_size; j += BM) {
// Calculate the indices for the current thread.
uint index_y = j + read_offset_y;
uint check_index_y = index_y;
if (reverse) {
index_y = axis_size - 1 - index_y;
}
// Read in SM.
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
for (int i = 0; i < N_READS; ++i) {
read_into[i] = in[index_y * stride + i];
}
} else {
for (int i = 0; i < N_READS; ++i) {
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
read_into[i] = in[index_y * stride + i];
} else {
read_into[i] = init;
}
}
}
block.sync();
// Read strided into registers.
for (int i = 0; i < n_scans; ++i) {
values[i] = read_from[i];
}
warp.sync();
// Perform the scan.
for (int i = 0; i < n_scans; ++i) {
values[i] = cg::inclusive_scan(warp, values[i], op);
values[i] = op(values[i], prefix[i]);
prefix[i] = warp.shfl(values[i], WARP_SIZE - 1);
}
// Write to SM.
for (int i = 0; i < n_scans; ++i) {
read_from[i] = values[i];
}
block.sync();
// Write to device memory.
if (!inclusive) {
if (check_index_y == 0) {
if ((read_offset_x + N_READS) < stride_limit) {
for (int i = 0; i < N_READS; ++i) {
out[index_y * stride + i] = init;
}
} else {
for (int i = 0; i < N_READS; ++i) {
if ((read_offset_x + i) < stride_limit) {
out[index_y * stride + i] = init;
}
}
}
}
if (reverse) {
index_y -= 1;
check_index_y += 1;
} else {
index_y += 1;
check_index_y += 1;
}
}
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
for (int i = 0; i < N_READS; ++i) {
out[index_y * stride + i] = read_into[i];
}
} else {
for (int i = 0; i < N_READS; ++i) {
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
out[index_y * stride + i] = read_into[i];
}
}
}
}
}
} // namespace cu } // namespace cu
template <typename F> template <typename F>
@@ -259,6 +386,8 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
out.copy_shared_buffer(in); out.copy_shared_buffer(in);
} }
constexpr int N_READS = 4;
int32_t axis_size = in.shape(axis_);
bool contiguous = in.strides()[axis_] == 1; bool contiguous = in.strides()[axis_] == 1;
auto& encoder = cu::get_command_encoder(s); auto& encoder = cu::get_command_encoder(s);
@@ -274,7 +403,6 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
dispatch_bool(inclusive_, [&](auto inclusive) { dispatch_bool(inclusive_, [&](auto inclusive) {
dispatch_bool(reverse_, [&](auto reverse) { dispatch_bool(reverse_, [&](auto reverse) {
if (contiguous) { if (contiguous) {
constexpr int N_READS = 4;
auto kernel = cu::contiguous_scan< auto kernel = cu::contiguous_scan<
T, T,
U, U,
@@ -282,7 +410,6 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
N_READS, N_READS,
inclusive.value, inclusive.value,
reverse.value>; reverse.value>;
int32_t axis_size = in.shape(axis_);
int block_dim = cuda::ceil_div(axis_size, N_READS); int block_dim = cuda::ceil_div(axis_size, N_READS);
block_dim = cuda::ceil_div(block_dim, WARP_SIZE) * WARP_SIZE; block_dim = cuda::ceil_div(block_dim, WARP_SIZE) * WARP_SIZE;
block_dim = std::min(block_dim, WARP_SIZE * WARP_SIZE); block_dim = std::min(block_dim, WARP_SIZE * WARP_SIZE);
@@ -294,7 +421,32 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
out.data<U>(), out.data<U>(),
axis_size); axis_size);
} else { } else {
throw std::runtime_error("Strided Scan NYI"); constexpr int BM = WARP_SIZE;
constexpr int BN = WARP_SIZE;
auto kernel = cu::strided_scan<
T,
U,
Op,
N_READS,
BM,
BN,
inclusive.value,
reverse.value>;
int64_t stride = in.strides()[axis_];
int64_t stride_blocks = cuda::ceil_div(stride, BN);
dim3 num_blocks = get_2d_grid_dims(
in.shape(), in.strides(), axis_size * stride);
num_blocks.x *= stride_blocks;
int block_dim = BN / N_READS * WARP_SIZE;
encoder.add_kernel_node(
kernel,
num_blocks,
block_dim,
in.data<T>(),
out.data<U>(),
axis_size,
stride,
stride_blocks);
} }
}); });
}); });