mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
CUDA backend: sort (#2262)
Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
parent
004c1d8ef2
commit
bae9a6b404
@ -16,6 +16,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
@ -73,7 +73,6 @@ bool fast::ScaledDotProductAttention::use_fallback(
|
||||
|
||||
NO_GPU(ArgPartition)
|
||||
NO_GPU(ArgReduce)
|
||||
NO_GPU(ArgSort)
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU_MULTI(Compiled)
|
||||
NO_GPU(Convolution)
|
||||
@ -100,7 +99,6 @@ NO_GPU(ScatterAxis)
|
||||
NO_GPU(Select)
|
||||
NO_GPU(SliceUpdate)
|
||||
NO_GPU(Softmax)
|
||||
NO_GPU(Sort)
|
||||
NO_GPU_MULTI(SVD)
|
||||
NO_GPU(Inverse)
|
||||
NO_GPU(Cholesky)
|
||||
|
180
mlx/backend/cuda/sort.cu
Normal file
180
mlx/backend/cuda/sort.cu
Normal file
@ -0,0 +1,180 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
#include <cub/device/device_segmented_sort.cuh>
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
struct ModOp {
|
||||
T divisor;
|
||||
__device__ T operator()(T x) {
|
||||
return x % divisor;
|
||||
}
|
||||
};
|
||||
|
||||
// We can not use any op in eval, make an utility.
|
||||
array swapaxes_in_eval(const array& in, int axis1, int axis2) {
|
||||
std::vector<int> axes(in.ndim());
|
||||
std::iota(axes.begin(), axes.end(), 0);
|
||||
std::swap(axes[axis1], axes[axis2]);
|
||||
// TODO: Share the code with Transpose::eval.
|
||||
Shape shape(axes.size());
|
||||
Strides strides(in.ndim());
|
||||
for (size_t ax = 0; ax < axes.size(); ++ax) {
|
||||
shape[ax] = in.shape()[axes[ax]];
|
||||
strides[ax] = in.strides()[axes[ax]];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
if (flags.contiguous) {
|
||||
auto [_, row_contiguous, col_contiguous] = check_contiguity(shape, strides);
|
||||
flags.row_contiguous = row_contiguous;
|
||||
flags.col_contiguous = col_contiguous;
|
||||
}
|
||||
array out(shape, in.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
void segmented_sort_pairs(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(
|
||||
cub::DeviceSegmentedSort::StableSortPairs(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
|
||||
temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
void segmented_sort(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(
|
||||
cub::DeviceSegmentedSort::StableSortKeys(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
|
||||
temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
array out = out_;
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
if (axis < 0) {
|
||||
axis += in.ndim();
|
||||
}
|
||||
int nsort = in.shape(axis);
|
||||
int nsegments = in.data_size() / nsort;
|
||||
int last_dim = in.ndim() - 1;
|
||||
|
||||
// If we are not sorting the innermost dimension of a contiguous array,
|
||||
// transpose and make a copy.
|
||||
bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1;
|
||||
if (!is_segmented_sort) {
|
||||
array trans = swapaxes_in_eval(in, axis, last_dim);
|
||||
in = array(trans.shape(), trans.dtype(), nullptr, {});
|
||||
copy_gpu(trans, in, CopyType::General, s);
|
||||
encoder.add_temporary(in);
|
||||
out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
|
||||
encoder.add_temporary(out);
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
}
|
||||
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
|
||||
using Type = cuda_type_t<CTYPE>;
|
||||
auto offsets = thrust::make_transform_iterator(
|
||||
thrust::make_counting_iterator(0),
|
||||
[nsort] __device__(int i) { return i * nsort; });
|
||||
if (argsort) {
|
||||
// Indices in the sorted dimension.
|
||||
array indices(
|
||||
allocator::malloc(out.nbytes()), in.shape(), out.dtype());
|
||||
encoder.add_temporary(indices);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(stream),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(indices.data_size()),
|
||||
thrust::device_pointer_cast(indices.data<uint32_t>()),
|
||||
ModOp<uint32_t>{static_cast<uint32_t>(nsort)});
|
||||
|
||||
// In argsort though we don't need the result of sorted values, the
|
||||
// API requires us to provide an array to store it.
|
||||
array discard(allocator::malloc(in.nbytes()), in.shape(), in.dtype());
|
||||
encoder.add_temporary(discard);
|
||||
|
||||
segmented_sort_pairs(
|
||||
encoder,
|
||||
in.data<Type>(),
|
||||
discard.data<Type>(),
|
||||
indices.data<uint32_t>(),
|
||||
out.data<uint32_t>(),
|
||||
in.data_size(),
|
||||
nsegments,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream);
|
||||
} else {
|
||||
segmented_sort(
|
||||
encoder,
|
||||
in.data<Type>(),
|
||||
out.data<Type>(),
|
||||
in.data_size(),
|
||||
nsegments,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream);
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"CUDA backend does not support sorting complex numbers");
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
if (!is_segmented_sort) {
|
||||
// Swap the sorted axis back.
|
||||
// TODO: Do in-place transpose instead of using a temporary out array.
|
||||
copy_gpu(swapaxes_in_eval(out, axis, last_dim), out_, CopyType::General, s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void ArgSort::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("ArgSort::eval_gpu");
|
||||
assert(inputs.size() == 1);
|
||||
gpu_sort(stream(), inputs[0], out, axis_, true);
|
||||
}
|
||||
|
||||
void Sort::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Sort::eval_gpu");
|
||||
assert(inputs.size() == 1);
|
||||
gpu_sort(stream(), inputs[0], out, axis_, false);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
Loading…
Reference in New Issue
Block a user