Changed nccl reduction to be a parrt of cuda grapph

This commit is contained in:
Anastasiia Filippova
2025-08-05 02:00:52 +02:00
parent 58eed7e0b5
commit bc6f00c00e
9 changed files with 264 additions and 45 deletions

View File

@@ -1,15 +1,5 @@
# Find the nccl libraries # FindNCCL.cmake
# # This module finds the NVIDIA NCCL library and its include directories.
# The following variables are optionally searched for defaults NCCL_ROOT_DIR:
# Base directory where all NCCL components are found NCCL_INCLUDE_DIR: Directory
# where NCCL header is found NCCL_LIB_DIR: Directory where NCCL library is found
#
# The following are set after configuration is done: NCCL_FOUND
# NCCL_INCLUDE_DIRS NCCL_LIBRARIES
#
# The path hints include CUDA_TOOLKIT_ROOT_DIR seeing as some folks install NCCL
# in the same location as the CUDA toolkit. See
# https://github.com/caffe2/caffe2/issues/1601
set(NCCL_ROOT_DIR set(NCCL_ROOT_DIR
$ENV{NCCL_ROOT_DIR} $ENV{NCCL_ROOT_DIR}

View File

@@ -19,6 +19,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp ${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp ${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp ${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu ${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp ${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp

View File

@@ -0,0 +1,87 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/distributed/primitives.h"
#include "mlx/primitives.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include <cassert>
namespace mlx::core {
namespace distributed {
void AllReduce::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Here I assume for now that in is donatable and contiguous.
// TODO
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& input = inputs[0];
auto& output = outputs[0];
auto& encoder = cu::get_command_encoder(stream());
output.set_data(allocator::malloc(output.nbytes()));
encoder.set_input_array(input);
encoder.set_output_array(output);
auto capture = encoder.capture_context();
auto& s = stream();
switch (reduce_type_) {
case Sum:
distributed::detail::all_sum(group(), input, output, s);
break;
case Max:
distributed::detail::all_max(group(), input, output, s);
break;
case Min:
distributed::detail::all_min(group(), input, output, s);
break;
default:
throw std::runtime_error(
"Only all reduce sum, max, and min are supported.");
}
}
void Send::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Here FOR NOW I assume that it is always row_contigious
// because not sure how to copy correctly
// TODO
assert(inputs.size() == 1);
assert(outputs.size() == 1);
distributed::detail::send(group(), inputs[0], dst_, stream());
outputs[0].copy_shared_buffer(inputs[0]);
}
void Recv::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 0);
assert(outputs.size() == 1);
outputs[0].set_data(allocator::malloc(outputs[0].nbytes()));
distributed::detail::recv(group(), outputs[0], src_, stream());
}
void AllGather::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Here FOR NOW I assume that it is always row_contigious
// because not sure how to copy correctly
// TODO
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& input = inputs[0];
auto& output = outputs[0];
output.copy_shared_buffer(input);
distributed::detail::all_gather(group(), input, output, stream());
}
}// namespace distributed
}

View File

@@ -0,0 +1,60 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <thrust/iterator/iterator_facade.h>
namespace mlx::core::cu {
// RandomAccessIterator for strided access to array entries.
template <typename Iterator, typename Stride = int64_t>
class strided_iterator
: public thrust::
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ strided_iterator(Iterator it, Stride stride)
: super_t(it), stride_(stride) {}
__host__ __device__ Stride stride() const {
return stride_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const strided_iterator& other) const {
return this->base() == other.base();
}
__host__ __device__ void advance(difference_type n) {
this->base_reference() += n * stride_;
}
__host__ __device__ void increment() {
this->base_reference() += stride_;
}
__host__ __device__ void decrement() {
this->base_reference() -= stride_;
}
__host__ __device__ difference_type
distance_to(const strided_iterator& other) const {
const difference_type dist = other.base() - this->base();
_CCCL_ASSERT(
dist % stride() == 0,
"Underlying iterator difference must be divisible by the stride");
return dist / stride();
}
Stride stride_;
};
} // namespace mlx::core::cu

View File

@@ -6,6 +6,7 @@
#include "mlx/backend/cuda/gemms/gemv.h" #include "mlx/backend/cuda/gemms/gemv.h"
#include "mlx/backend/gpu/copy.h" #include "mlx/backend/gpu/copy.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/utils.h"
#include <nvtx3/nvtx3.hpp> #include <nvtx3/nvtx3.hpp>
#include <numeric> #include <numeric>

View File

@@ -17,28 +17,6 @@ bool fast::ScaledDotProductAttention::use_fallback(
return true; return true;
} }
namespace distributed {
void AllReduce::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Here I assume for now that in is donatable and contiguous.
// TODO
auto& input = inputs[0];
auto& output = outputs[0];
output.copy_shared_buffer(input);
auto& s = stream();
switch (reduce_type_) {
case Sum:
distributed::detail::all_sum(group(), input, output, s);
break;
default:
throw std::runtime_error("Only all reduce sum is supported for now");
}
}
} // namespace distributed
#define NO_GPU_MULTI(func) \ #define NO_GPU_MULTI(func) \
void func::eval_gpu( \ void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \ const std::vector<array>& inputs, std::vector<array>& outputs) { \
@@ -79,10 +57,11 @@ NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(CustomKernel) NO_GPU_MULTI(CustomKernel)
} // namespace fast } // namespace fast
namespace distributed { // namespace distributed {
NO_GPU_MULTI(AllGather) // NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(Send) // NO_GPU_MULTI(AllGather)
NO_GPU_MULTI(Recv) // NO_GPU_MULTI(Send)
} // namespace distributed // NO_GPU_MULTI(Recv)
// } // namespace distributed
} // namespace mlx::core } // namespace mlx::core

View File

@@ -0,0 +1,84 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/cast_op.cuh"
#include "mlx/backend/cuda/reduce/reduce.cuh"
#include <thrust/device_ptr.h>
#include <cub/device/device_reduce.cuh>
#include <cub/device/device_segmented_reduce.cuh>
namespace mlx::core {
template <typename... Args>
void cub_all_reduce(cu::CommandEncoder& encoder, Args&&... args) {
// Allocate temporary storage.
size_t size;
CHECK_CUDA_ERROR(cub::DeviceReduce::Reduce(nullptr, size, args...));
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
encoder.add_temporary(temp);
// Run op.
CHECK_CUDA_ERROR(cub::DeviceReduce::Reduce(temp.data<void>(), size, args...));
}
template <typename... Args>
void cub_segmented_reduce(cu::CommandEncoder& encoder, Args&&... args) {
// Allocate temporary storage.
size_t size;
CHECK_CUDA_ERROR(cub::DeviceSegmentedReduce::Reduce(nullptr, size, args...));
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
encoder.add_temporary(temp);
// Run op.
CHECK_CUDA_ERROR(
cub::DeviceSegmentedReduce::Reduce(temp.data<void>(), size, args...));
}
struct MultiplyOp {
int factor;
__device__ int operator()(int i) {
return i * factor;
}
};
void segmented_reduce(
cu::CommandEncoder& encoder,
const array& in,
array& out,
Reduce::ReduceType reduce_type,
const std::vector<int>& axes,
const ReductionPlan& plan) {
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
using InType = cuda_type_t<CTYPE>;
using OutType = cu::ReduceResult<OP, InType>::type;
auto in_iter = cu::make_cast_iterator<OutType>(
thrust::device_pointer_cast(in.data<InType>()));
auto out_ptr = thrust::device_pointer_cast(out.data<OutType>());
auto init = cu::ReduceInit<OP, InType>::value();
if (plan.type == ContiguousAllReduce) {
cub_all_reduce(
encoder, in_iter, out_ptr, in.data_size(), OP(), init, stream);
} else if (plan.type == ContiguousReduce) {
auto offsets = thrust::make_transform_iterator(
thrust::make_counting_iterator(0), MultiplyOp{plan.shape.back()});
cub_segmented_reduce(
encoder,
in_iter,
out_ptr,
out.size(),
offsets,
offsets + 1,
OP(),
init,
stream);
} else {
throw std::runtime_error("Unsupported plan in segmented_reduce.");
}
});
});
});
}
} // namespace mlx::core

View File

@@ -2,6 +2,7 @@
#include <unordered_map> #include <unordered_map>
#include <iostream>
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/distributed/distributed_impl.h" #include "mlx/distributed/distributed_impl.h"
#include "mlx/distributed/mpi/mpi.h" #include "mlx/distributed/mpi/mpi.h"
@@ -81,7 +82,7 @@ class EmptyGroup : public GroupImpl {
} // namespace detail } // namespace detail
bool is_available() { bool is_available() {
return mpi::is_available() || ring::is_available(); return mpi::is_available() || ring::is_available() || nccl::is_available();
} }
int Group::rank() const { int Group::rank() const {

View File

@@ -271,7 +271,12 @@ class NCCLGroup : public GroupImpl {
void all_sum(const array& input, array& output, Stream stream) override { void all_sum(const array& input, array& output, Stream stream) override {
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) { detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
using T = typename decltype(type_tag)::type; using T = typename decltype(type_tag)::type;
detail::all_reduce_impl<T>(input, output, stream, dt, ncclSum); all_reduce_impl<T>(
input,
output,
stream,
dt,
ncclSum);
}); });
} }
@@ -281,6 +286,8 @@ class NCCLGroup : public GroupImpl {
void all_gather(const array& input, array& output, Stream stream) override { void all_gather(const array& input, array& output, Stream stream) override {
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) { detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
auto& encoder = cu::get_command_encoder(stream);
using T = typename decltype(type_tag)::type; using T = typename decltype(type_tag)::type;
CHECK_NCCL(ncclAllGather( CHECK_NCCL(ncclAllGather(
input.data<T>(), input.data<T>(),
@@ -288,12 +295,14 @@ class NCCLGroup : public GroupImpl {
input.size(), input.size(),
dt, dt,
comm_, comm_,
cu::get_stream(stream).last_cuda_stream())); encoder.stream()));
}); });
} }
void send(const array& input, int dst, Stream stream) override { void send(const array& input, int dst, Stream stream) override {
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) { detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
auto& encoder = cu::get_command_encoder(stream);
using T = typename decltype(type_tag)::type; using T = typename decltype(type_tag)::type;
CHECK_NCCL(ncclSend( CHECK_NCCL(ncclSend(
input.data<T>(), input.data<T>(),
@@ -301,20 +310,22 @@ class NCCLGroup : public GroupImpl {
dt, dt,
dst, dst,
comm_, comm_,
cu::get_stream(stream).last_cuda_stream())); encoder.stream()));
}); });
} }
void recv(array& output, int src, Stream stream) override { void recv(array& output, int src, Stream stream) override {
detail::dispatch_dtype(output, [&](auto type_tag, ncclDataType_t dt) { detail::dispatch_dtype(output, [&](auto type_tag, ncclDataType_t dt) {
using T = typename decltype(type_tag)::type; using T = typename decltype(type_tag)::type;
auto& encoder = cu::get_command_encoder(stream);
CHECK_NCCL(ncclRecv( CHECK_NCCL(ncclRecv(
output.data<T>(), output.data<T>(),
output.size(), output.size(),
dt, dt,
src, src,
comm_, comm_,
cu::get_stream(stream).last_cuda_stream())); encoder.stream()));
}); });
} }
@@ -339,6 +350,9 @@ class NCCLGroup : public GroupImpl {
Stream stream, Stream stream,
ncclDataType_t dt, ncclDataType_t dt,
ncclRedOp_t op) { ncclRedOp_t op) {
auto& encoder = cu::get_command_encoder(stream);
CHECK_NCCL(ncclAllReduce( CHECK_NCCL(ncclAllReduce(
input.data<T>(), input.data<T>(),
output.data<T>(), output.data<T>(),
@@ -346,7 +360,9 @@ class NCCLGroup : public GroupImpl {
dt, dt,
op, op,
comm_, comm_,
cu::get_stream(stream).last_cuda_stream())); encoder.stream()
));
} }
int rank_, size_; int rank_, size_;