mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-01 00:28:11 +08:00 
			
		
		
		
	non-symmetric eig and eigh (#2188)
This commit is contained in:
		| @@ -236,7 +236,7 @@ void init_linalg(nb::module_& parent_module) { | ||||
|  | ||||
|         Returns: | ||||
|             Union[tuple(array, ...), array]: | ||||
|               If compute_uv is ``True`` returns the ``U``, ``S``, and ``Vt`` matrices, such that  | ||||
|               If compute_uv is ``True`` returns the ``U``, ``S``, and ``Vt`` matrices, such that | ||||
|               ``A = U @ diag(S) @ Vt``. If compute_uv is ``False`` returns singular values array ``S``. | ||||
|       )pbdoc"); | ||||
|   m.def( | ||||
| @@ -407,6 +407,76 @@ void init_linalg(nb::module_& parent_module) { | ||||
|         Returns: | ||||
|             array: The cross product of ``a`` and ``b`` along the specified axis. | ||||
|       )pbdoc"); | ||||
|   m.def( | ||||
|       "eigvals", | ||||
|       &mx::linalg::eigvals, | ||||
|       "a"_a, | ||||
|       nb::kw_only(), | ||||
|       "stream"_a = nb::none(), | ||||
|       R"pbdoc( | ||||
|         Compute the eigenvalues of a square matrix. | ||||
|  | ||||
|         This function differs from :func:`numpy.linalg.eigvals` in that the | ||||
|         return type is always complex even if the eigenvalues are all real. | ||||
|  | ||||
|         This function supports arrays with at least 2 dimensions. When the | ||||
|         input has more than two dimensions, the eigenvalues are computed for | ||||
|         each matrix in the last two dimensions. | ||||
|  | ||||
|         Args: | ||||
|             a (array): The input array. | ||||
|             stream (Stream, optional): Stream or device. Defaults to ``None`` | ||||
|               in which case the default stream of the default device is used. | ||||
|  | ||||
|         Returns: | ||||
|             array: The eigenvalues (not necessarily in order). | ||||
|  | ||||
|         Example: | ||||
|             >>> A = mx.array([[1., -2.], [-2., 1.]]) | ||||
|             >>> eigenvalues = mx.linalg.eigvals(A, stream=mx.cpu) | ||||
|             >>> eigenvalues | ||||
|             array([3+0j, -1+0j], dtype=complex64) | ||||
|       )pbdoc"); | ||||
|   m.def( | ||||
|       "eig", | ||||
|       [](const mx::array& a, mx::StreamOrDevice s) { | ||||
|         auto result = mx::linalg::eig(a, s); | ||||
|         return nb::make_tuple(result.first, result.second); | ||||
|       }, | ||||
|       "a"_a, | ||||
|       nb::kw_only(), | ||||
|       "stream"_a = nb::none(), | ||||
|       R"pbdoc( | ||||
|         Compute the eigenvalues and eigenvectors of a square matrix. | ||||
|  | ||||
|         This function differs from :func:`numpy.linalg.eig` in that the | ||||
|         return type is always complex even if the eigenvalues are all real. | ||||
|  | ||||
|         This function supports arrays with at least 2 dimensions. When the input | ||||
|         has more than two dimensions, the eigenvalues and eigenvectors are | ||||
|         computed for each matrix in the last two dimensions. | ||||
|  | ||||
|         Args: | ||||
|             a (array): The input array. | ||||
|             stream (Stream, optional): Stream or device. Defaults to ``None`` | ||||
|               in which case the default stream of the default device is used. | ||||
|  | ||||
|         Returns: | ||||
|             Tuple[array, array]: | ||||
|               A tuple containing the eigenvalues and the normalized right | ||||
|               eigenvectors. The column ``v[:, i]`` is the eigenvector | ||||
|               corresponding to the i-th eigenvalue. | ||||
|  | ||||
|         Example: | ||||
|             >>> A = mx.array([[1., -2.], [-2., 1.]]) | ||||
|             >>> w, v = mx.linalg.eig(A, stream=mx.cpu) | ||||
|             >>> w | ||||
|             array([3+0j, -1+0j], dtype=complex64) | ||||
|             >>> v | ||||
|             array([[0.707107+0j, 0.707107+0j], | ||||
|                    [-0.707107+0j, 0.707107+0j]], dtype=complex64) | ||||
|       )pbdoc"); | ||||
|  | ||||
|   m.def( | ||||
|       "eigvalsh", | ||||
|       &mx::linalg::eigvalsh, | ||||
|   | ||||
| @@ -312,6 +312,83 @@ class TestLinalg(mlx_tests.MLXTestCase): | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.cross(a, b) | ||||
|  | ||||
|     def test_eig(self): | ||||
|         tols = {"atol": 1e-5, "rtol": 1e-5} | ||||
|  | ||||
|         def check_eigs_and_vecs(A_np, kwargs={}): | ||||
|             A = mx.array(A_np) | ||||
|             eig_vals, eig_vecs = mx.linalg.eig(A, stream=mx.cpu, **kwargs) | ||||
|             self.assertTrue( | ||||
|                 mx.allclose(A @ eig_vecs, eig_vals[..., None, :] * eig_vecs, **tols) | ||||
|             ) | ||||
|             eig_vals_only = mx.linalg.eigvals(A, stream=mx.cpu, **kwargs) | ||||
|             self.assertTrue(mx.allclose(eig_vals, eig_vals_only, **tols)) | ||||
|  | ||||
|         # Test a simple 2x2 matrix | ||||
|         A_np = np.array([[1.0, 1.0], [3.0, 4.0]], dtype=np.float32) | ||||
|         check_eigs_and_vecs(A_np) | ||||
|  | ||||
|         # Test complex eigenvalues | ||||
|         A_np = np.array([[1.0, -1.0], [1.0, 1.0]], dtype=np.float32) | ||||
|         check_eigs_and_vecs(A_np) | ||||
|  | ||||
|         # Test a larger random symmetric matrix | ||||
|         n = 5 | ||||
|         np.random.seed(1) | ||||
|         A_np = np.random.randn(n, n).astype(np.float32) | ||||
|         check_eigs_and_vecs(A_np) | ||||
|  | ||||
|         # Test with batched input | ||||
|         A_np = np.random.randn(3, n, n).astype(np.float32) | ||||
|         check_eigs_and_vecs(A_np) | ||||
|  | ||||
|         # Test error cases | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.eig(mx.array([1.0, 2.0]))  # 1D array | ||||
|  | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.eig( | ||||
|                 mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) | ||||
|             )  # Non-square matrix | ||||
|  | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.eigvals(mx.array([1.0, 2.0]))  # 1D array | ||||
|  | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.eigvals( | ||||
|                 mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) | ||||
|             )  # Non-square matrix | ||||
|  | ||||
|     def test_lu(self): | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.lu(mx.array(0.0), stream=mx.cpu) | ||||
|  | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.lu(mx.array([0.0, 1.0]), stream=mx.cpu) | ||||
|  | ||||
|         with self.assertRaises(ValueError): | ||||
|             mx.linalg.lu(mx.array([[0, 1], [1, 0]]), stream=mx.cpu) | ||||
|  | ||||
|         # Test 3x3 matrix | ||||
|         a = mx.array([[3.0, 1.0, 2.0], [1.0, 8.0, 6.0], [9.0, 2.0, 5.0]]) | ||||
|         P, L, U = mx.linalg.lu(a, stream=mx.cpu) | ||||
|         self.assertTrue(mx.allclose(L[P, :] @ U, a)) | ||||
|  | ||||
|         # Test batch dimension | ||||
|         a = mx.broadcast_to(a, (5, 5, 3, 3)) | ||||
|         P, L, U = mx.linalg.lu(a, stream=mx.cpu) | ||||
|         L = mx.take_along_axis(L, P[..., None], axis=-2) | ||||
|         self.assertTrue(mx.allclose(L @ U, a)) | ||||
|  | ||||
|         # Test non-square matrix | ||||
|         a = mx.array([[3.0, 1.0, 2.0], [1.0, 8.0, 6.0]]) | ||||
|         P, L, U = mx.linalg.lu(a, stream=mx.cpu) | ||||
|         self.assertTrue(mx.allclose(L[P, :] @ U, a)) | ||||
|  | ||||
|         a = mx.array([[3.0, 1.0], [1.0, 8.0], [9.0, 2.0]]) | ||||
|         P, L, U = mx.linalg.lu(a, stream=mx.cpu) | ||||
|         self.assertTrue(mx.allclose(L[P, :] @ U, a)) | ||||
|  | ||||
|     def test_eigh(self): | ||||
|         tols = {"atol": 1e-5, "rtol": 1e-5} | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Awni Hannun
					Awni Hannun