redesign for faster cpu/gpu synch (#1869)

* redesign for faster cpu/gpu synch

* load + more async CPU

* use command encoder API and move more ops to use it

* make fence back-end generic + CPU only fence

* faster build

* fix async eval

* fixes + handle temporaries

* fix / improve cpu conv

* remove unused status, fix siblings

* fix extensions

* fix

* fix no cpu build

* format

* comments

* fix perf regression, remove unecessary abort

* fix events, task limit cpu

* fix waiting

* fix donation / temporaries in normalization
This commit is contained in:
Awni Hannun
2025-03-06 19:23:38 -08:00
committed by GitHub
parent 5245f12a46
commit c4230747a1
103 changed files with 5013 additions and 3873 deletions

View File

@@ -2,6 +2,7 @@
#include "mlx/allocator.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
@@ -9,7 +10,7 @@
namespace mlx::core {
template <typename T>
void cholesky_impl(const array& a, array& factor, bool upper) {
void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
// Lapack uses the column-major convention. We take advantage of the fact that
// the matrix should be symmetric:
// (A)ᵀ = A
@@ -17,60 +18,63 @@ void cholesky_impl(const array& a, array& factor, bool upper) {
// triangular matrix, so uplo is the opposite of what we would expect from
// upper
char uplo = (upper) ? 'L' : 'U';
// The decomposition is computed in place, so just copy the input to the
// output.
copy(
a,
factor,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
stream);
const int N = a.shape(-1);
const size_t num_matrices = a.size() / (N * N);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_output_array(factor);
encoder.dispatch([matrix = factor.data<T>(),
upper,
N = a.shape(-1),
size = a.size()]() mutable {
char uplo = (upper) ? 'L' : 'U';
size_t num_matrices = size / (N * N);
for (int i = 0; i < num_matrices; i++) {
// Compute Cholesky factorization.
int info;
potrf<T>(
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
T* matrix = factor.data<T>();
for (int i = 0; i < num_matrices; i++) {
// Compute Cholesky factorization.
int info;
potrf<T>(
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
// TODO: We do nothing when the matrix is not positive semi-definite
// because throwing an error would result in a crash. If we figure out how
// to catch errors from the implementation we should throw.
if (info < 0) {
std::stringstream msg;
msg << "[cholesky] Cholesky decomposition failed with error code "
<< info;
throw std::runtime_error(msg.str());
}
// Zero out the upper/lower triangle while advancing the pointer to the
// next matrix at the same time.
for (int row = 0; row < N; row++) {
if (upper) {
std::fill(matrix, matrix + row, 0);
} else {
std::fill(matrix + row + 1, matrix + N, 0);
// TODO: We do nothing when the matrix is not positive semi-definite
// because throwing an error would result in a crash. If we figure out how
// to catch errors from the implementation we should throw.
if (info < 0) {
std::stringstream msg;
msg << "[Cholesky::eval_cpu] Cholesky decomposition failed with error code "
<< info;
throw std::runtime_error(msg.str());
}
// Zero out the upper/lower triangle while advancing the pointer to the
// next matrix at the same time.
for (int row = 0; row < N; row++) {
if (upper) {
std::fill(matrix, matrix + row, 0);
} else {
std::fill(matrix + row + 1, matrix + N, 0);
}
matrix += N;
}
matrix += N;
}
}
});
}
void Cholesky::eval_cpu(const std::vector<array>& inputs, array& output) {
switch (inputs[0].dtype()) {
case float32:
cholesky_impl<float>(inputs[0], output, upper_);
cholesky_impl<float>(inputs[0], output, upper_, stream());
break;
case float64:
cholesky_impl<double>(inputs[0], output, upper_);
cholesky_impl<double>(inputs[0], output, upper_, stream());
break;
default:
throw std::runtime_error(