redesign for faster cpu/gpu synch (#1869)

* redesign for faster cpu/gpu synch

* load + more async CPU

* use command encoder API and move more ops to use it

* make fence back-end generic + CPU only fence

* faster build

* fix async eval

* fixes + handle temporaries

* fix / improve cpu conv

* remove unused status, fix siblings

* fix extensions

* fix

* fix no cpu build

* format

* comments

* fix perf regression, remove unecessary abort

* fix events, task limit cpu

* fix waiting

* fix donation / temporaries in normalization
This commit is contained in:
Awni Hannun
2025-03-06 19:23:38 -08:00
committed by GitHub
parent 5245f12a46
commit c4230747a1
103 changed files with 5013 additions and 3873 deletions

View File

@@ -9,39 +9,46 @@
namespace mlx::core {
BNNSDataType to_bnns_dtype(Dtype mlx_dtype) {
uint32_t size_bits = size_of(mlx_dtype) * 8;
switch (kindof(mlx_dtype)) {
case Dtype::Kind::b:
return BNNSDataTypeBoolean;
case Dtype::Kind::u:
return BNNSDataType(BNNSDataTypeUIntBit | size_bits);
case Dtype::Kind::i:
return BNNSDataType(BNNSDataTypeIntBit | size_bits);
case Dtype::Kind::f:
return BNNSDataType(BNNSDataTypeFloatBit | size_bits);
case Dtype::Kind::V:
return BNNSDataTypeBFloat16;
case Dtype::Kind::c:
throw std::invalid_argument("BNNS does not support complex types");
}
template <typename T>
constexpr BNNSDataType to_bnns_dtype();
template <>
constexpr BNNSDataType to_bnns_dtype<float>() {
return BNNSDataType(BNNSDataTypeFloatBit | 32);
}
template <>
constexpr BNNSDataType to_bnns_dtype<float16_t>() {
return BNNSDataType(BNNSDataTypeFloatBit | 16);
}
template <>
constexpr BNNSDataType to_bnns_dtype<bfloat16_t>() {
return BNNSDataTypeBFloat16;
}
template <typename T>
void matmul_bnns(
const array& a,
const array& b,
array& out,
const T* a,
const T* b,
T* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta) {
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
BNNSDataType bnns_dtype = to_bnns_dtype(out.dtype());
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
@@ -115,14 +122,14 @@ void matmul_bnns(
auto bnns_filter =
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
for (int i = 0; i < (a.size() / (M * K)); ++i) {
for (int i = 0; i < batch_size; ++i) {
BNNSFilterApplyTwoInput(
bnns_filter,
a.data<uint8_t>() +
elem_to_loc(M * K * i, a.shape(), a.strides()) * a.itemsize(),
b.data<uint8_t>() +
elem_to_loc(K * N * i, b.shape(), b.strides()) * b.itemsize(),
out.data<uint8_t>() + M * N * i * out.itemsize());
reinterpret_cast<const uint8_t*>(
a + elem_to_loc(M * K * i, a_shape, a_strides)),
reinterpret_cast<const uint8_t*>(
b + elem_to_loc(K * N * i, b_shape, b_strides)),
reinterpret_cast<uint8_t*>(out + M * N * i));
}
BNNSFilterDestroy(bnns_filter);
@@ -131,30 +138,72 @@ void matmul_bnns(
template <>
void matmul<float16_t>(
const array& a,
const array& b,
array& out,
const float16_t* a,
const float16_t* b,
float16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta) {
matmul_bnns(a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta);
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
matmul_bnns(
a,
b,
out,
a_transposed,
b_transposed,
lda,
ldb,
ldc,
alpha,
beta,
batch_size,
a_shape,
a_strides,
b_shape,
b_strides);
}
template <>
void matmul<bfloat16_t>(
const array& a,
const array& b,
array& out,
const bfloat16_t* a,
const bfloat16_t* b,
bfloat16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta) {
matmul_bnns(a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta);
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
matmul_bnns(
a,
b,
out,
a_transposed,
b_transposed,
lda,
ldb,
ldc,
alpha,
beta,
batch_size,
a_shape,
a_strides,
b_shape,
b_strides);
}
} // namespace mlx::core