redesign for faster cpu/gpu synch (#1869)

* redesign for faster cpu/gpu synch

* load + more async CPU

* use command encoder API and move more ops to use it

* make fence back-end generic + CPU only fence

* faster build

* fix async eval

* fixes + handle temporaries

* fix / improve cpu conv

* remove unused status, fix siblings

* fix extensions

* fix

* fix no cpu build

* format

* comments

* fix perf regression, remove unecessary abort

* fix events, task limit cpu

* fix waiting

* fix donation / temporaries in normalization
This commit is contained in:
Awni Hannun
2025-03-06 19:23:38 -08:00
committed by GitHub
parent 5245f12a46
commit c4230747a1
103 changed files with 5013 additions and 3873 deletions

View File

@@ -8,20 +8,27 @@ namespace mlx::core {
template <>
void matmul<float>(
const array& a,
const array& b,
array& out,
const float* a,
const float* b,
float* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta) {
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < (a.size() / (M * K)); ++i) {
for (int i = 0; i < batch_size; ++i) {
cblas_sgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
@@ -29,34 +36,40 @@ void matmul<float>(
M,
N,
K,
alpha, // alpha
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
alpha,
a + elem_to_loc(M * K * i, a_shape, a_strides),
lda,
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
b + elem_to_loc(K * N * i, b_shape, b_strides),
ldb,
beta, // beta
out.data<float>() + M * N * i,
out.shape(-1) // ldc
);
beta,
out + M * N * i,
ldc);
}
}
template <>
void matmul<double>(
const array& a,
const array& b,
array& out,
const double* a,
const double* b,
double* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta) {
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < (a.size() / (M * K)); ++i) {
for (int i = 0; i < batch_size; ++i) {
cblas_dgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
@@ -64,15 +77,14 @@ void matmul<double>(
M,
N,
K,
alpha, // alpha
a.data<double>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
alpha,
a + elem_to_loc(M * K * i, a_shape, a_strides),
lda,
b.data<double>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
b + elem_to_loc(K * N * i, b_shape, b_strides),
ldb,
beta, // beta
out.data<double>() + M * N * i,
out.shape(-1) // ldc
);
beta,
out + M * N * i,
ldc);
}
}