redesign for faster cpu/gpu synch (#1869)

* redesign for faster cpu/gpu synch

* load + more async CPU

* use command encoder API and move more ops to use it

* make fence back-end generic + CPU only fence

* faster build

* fix async eval

* fixes + handle temporaries

* fix / improve cpu conv

* remove unused status, fix siblings

* fix extensions

* fix

* fix no cpu build

* format

* comments

* fix perf regression, remove unecessary abort

* fix events, task limit cpu

* fix waiting

* fix donation / temporaries in normalization
This commit is contained in:
Awni Hannun
2025-03-06 19:23:38 -08:00
committed by GitHub
parent 5245f12a46
commit c4230747a1
103 changed files with 5013 additions and 3873 deletions

View File

@@ -4,16 +4,17 @@
#include "mlx/backend/common/hadamard.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/primitives.h"
namespace mlx::core {
// n = 2^k component
template <typename T>
void hadamard_n(array& out, int n, int m, float scale) {
for (int b = 0; b < out.size() / n; b++) {
void hadamard_n(T* out, int n, int m, float scale, size_t size) {
for (int b = 0; b < size / n; b++) {
size_t loc = b * n;
T* data_ptr = out.data<T>() + loc;
T* data_ptr = out + loc;
int h = 1;
int n_over_2 = n / 2;
while (h < n) {
@@ -36,7 +37,7 @@ void hadamard_n(array& out, int n, int m, float scale) {
// m component
template <typename T>
void hadamard_m(array& out, int n, int m, float scale) {
void hadamard_m(T* out, int n, int m, float scale, size_t size) {
auto h_matrices = hadamard_matrices();
auto& matrix = h_matrices[m];
auto start = 1;
@@ -51,9 +52,9 @@ void hadamard_m(array& out, int n, int m, float scale) {
end = matrix.find('\n', start);
}
for (int b = 0; b < out.size() / m / n; b++) {
for (int b = 0; b < size / m / n; b++) {
size_t loc = b * n * m;
T* data_ptr = out.data<T>() + loc;
T* data_ptr = out + loc;
for (int i = 0; i < n; i++) {
std::vector<float> out(m);
for (int j = 0; j < m; j++) {
@@ -74,12 +75,17 @@ void hadamard_m(array& out, int n, int m, float scale) {
}
template <typename T>
void hadamard(array& out, int n, int m, float scale) {
float n_scale = m > 1 ? 1.0 : scale;
hadamard_n<T>(out, n, m, n_scale);
if (m > 1) {
hadamard_m<T>(out, n, m, scale);
}
void hadamard(array& out, int n, int m, float scale, Stream stream) {
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_output_array(out);
auto out_ptr = out.data<T>();
encoder.dispatch([out_ptr, size = out.size(), n, m, scale]() {
float n_scale = m > 1 ? 1.0 : scale;
hadamard_n<T>(out_ptr, n, m, n_scale, size);
if (m > 1) {
hadamard_m<T>(out_ptr, n, m, scale, size);
}
});
}
void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -87,18 +93,26 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Copy input to output
copy(in, out, CopyType::General);
if (in.flags().row_contiguous && in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
copy(
in,
out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,
stream());
}
int axis = out.ndim() - 1;
auto [n, m] = decompose_hadamard(out.shape(axis));
switch (in.dtype()) {
case float32:
return hadamard<float>(out, n, m, scale_);
return hadamard<float>(out, n, m, scale_, stream());
case float16:
return hadamard<float16_t>(out, n, m, scale_);
return hadamard<float16_t>(out, n, m, scale_, stream());
case bfloat16:
return hadamard<bfloat16_t>(out, n, m, scale_);
return hadamard<bfloat16_t>(out, n, m, scale_, stream());
default:
throw std::invalid_argument("[hadamard] Unsupported type.");
}