redesign for faster cpu/gpu synch (#1869)

* redesign for faster cpu/gpu synch

* load + more async CPU

* use command encoder API and move more ops to use it

* make fence back-end generic + CPU only fence

* faster build

* fix async eval

* fixes + handle temporaries

* fix / improve cpu conv

* remove unused status, fix siblings

* fix extensions

* fix

* fix no cpu build

* format

* comments

* fix perf regression, remove unecessary abort

* fix events, task limit cpu

* fix waiting

* fix donation / temporaries in normalization
This commit is contained in:
Awni Hannun
2025-03-06 19:23:38 -08:00
committed by GitHub
parent 5245f12a46
commit c4230747a1
103 changed files with 5013 additions and 3873 deletions

View File

@@ -5,6 +5,7 @@
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h"
@@ -64,36 +65,36 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& b_pre = inputs[1];
auto check_transpose =
[](const array& arr, bool do_copy, bool expand_all = false) {
[s = stream()](const array& arr, bool do_copy, bool expand_all = false) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector);
return std::make_tuple(false, stx, arr_copy);
copy(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(false, stx, arr_copy, true);
}
return std::make_tuple(false, stx, arr);
return std::make_tuple(false, stx, arr, false);
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector);
return std::make_tuple(true, sty, arr_copy);
copy(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(true, sty, arr_copy, true);
}
return std::make_tuple(true, sty, arr);
return std::make_tuple(true, sty, arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
copy(arr, arr_copy, CopyType::General, s);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
return std::make_tuple(false, stx, arr_copy, true);
}
};
bool has_op_mask = inputs.size() > 3;
bool has_out_mask = inputs.size() == 3 || inputs.size() == 5;
auto [a_transposed, lda, a] =
auto [a_transposed, lda, a, a_copied] =
check_transpose(a_pre, has_op_mask, inputs.back().dtype() != bool_);
auto [b_transposed, ldb, b] =
auto [b_transposed, ldb, b, b_copied] =
check_transpose(b_pre, has_op_mask, inputs.back().dtype() != bool_);
size_t M = a.shape(-2);
@@ -104,31 +105,39 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return;
}
auto& encoder = cpu::get_command_encoder(stream());
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
encoder.set_output_array(out);
encoder.dispatch([out_ptr = out.data<void>(), nbytes = out.nbytes()]() {
std::memset(out_ptr, 0, nbytes);
});
return;
}
auto mask_array = [](const array& mask,
auto mask_array = [](const void* mask,
float* data,
int block_size,
int batch_idx,
int X,
int Y,
size_t X_data_str,
size_t Y_data_str) {
size_t Y_data_str,
const Shape& mask_shape,
const Strides& mask_strides,
bool is_bool) {
auto ndim = mask_shape.size();
auto mask_offset = elem_to_loc(
mask.shape(-1) * mask.shape(-2) * batch_idx,
mask.shape(),
mask.strides());
mask_shape[ndim - 1] * mask_shape[ndim - 2] * batch_idx,
mask_shape,
mask_strides);
auto X_mask_str = mask.strides()[mask.ndim() - 2];
auto Y_mask_str = mask.strides()[mask.ndim() - 1];
auto X_mask_str = mask_strides[ndim - 2];
auto Y_mask_str = mask_strides[ndim - 1];
if (mask.dtype() == bool_) {
if (is_bool) {
return mask_matrix(
data,
mask.data<bool>(),
static_cast<const bool*>(mask),
block_size,
X,
Y,
@@ -140,7 +149,7 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
} else {
return mask_matrix(
data,
mask.data<float>(),
static_cast<const float*>(mask),
block_size,
X,
Y,
@@ -152,61 +161,155 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
}
};
for (int i = 0; i < (out.size() / (M * size_t(N))); ++i) {
// Adjust pointer
float* ai =
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides());
float* bi =
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides());
float* ci = out.data<float>() + M * N * i;
encoder.set_input_array(a);
encoder.set_input_array(b);
const void* a_mask_ptr;
const void* b_mask_ptr;
const void* out_mask_ptr;
Shape a_mask_shape;
Shape b_mask_shape;
Shape out_mask_shape;
Strides a_mask_strides;
Strides b_mask_strides;
Strides out_mask_strides;
bool a_mask_bool;
bool b_mask_bool;
bool out_mask_bool;
if (has_op_mask) {
auto& a_mask = inputs[inputs.size() - 2];
auto& b_mask = inputs[inputs.size() - 1];
a_mask_ptr = a_mask.data<void>();
b_mask_ptr = b_mask.data<void>();
a_mask_shape = a_mask.shape();
b_mask_shape = b_mask.shape();
a_mask_strides = a_mask.strides();
b_mask_strides = b_mask.strides();
a_mask_bool = (a_mask.dtype() == bool_);
b_mask_bool = (b_mask.dtype() == bool_);
encoder.set_input_array(a_mask);
encoder.set_input_array(b_mask);
}
if (has_out_mask) {
auto& out_mask = inputs[2];
out_mask_ptr = out_mask.data<void>();
out_mask_bool = (out_mask.dtype() == bool_);
encoder.set_input_array(out_mask);
out_mask_shape = out_mask.shape();
out_mask_strides = out_mask.strides();
}
encoder.set_output_array(out);
auto a_ptr = a.data<float>();
auto b_ptr = b.data<float>();
auto out_ptr = out.data<float>();
size_t num_matrices = out.size() / (M * size_t(N));
auto ldc = out.shape(-1);
// Zero out blocks in a and b if needed
if (has_op_mask) {
auto& a_mask = inputs[inputs.size() - 2];
mask_array(
a_mask,
ai,
block_size_,
i,
encoder.dispatch([a_ptr,
b_ptr,
out_ptr,
a_mask_ptr,
b_mask_ptr,
out_mask_ptr,
has_op_mask,
has_out_mask,
block_size = block_size_,
num_matrices,
M,
N,
K,
a_transposed = a_transposed,
b_transposed = b_transposed,
lda = lda,
ldb = ldb,
ldc,
a_shape = a.shape(),
a_strides = a.strides(),
b_shape = b.shape(),
b_strides = b.strides(),
a_mask_shape = std::move(a_mask_shape),
b_mask_shape = std::move(b_mask_shape),
out_mask_shape = std::move(out_mask_shape),
a_mask_strides = std::move(a_mask_strides),
b_mask_strides = std::move(b_mask_strides),
out_mask_strides = std::move(out_mask_strides),
mask_array,
a_mask_bool,
b_mask_bool,
out_mask_bool]() {
for (int i = 0; i < num_matrices; ++i) {
// Adjust pointer
float* ai = a_ptr + elem_to_loc(M * K * i, a_shape, a_strides);
float* bi = b_ptr + elem_to_loc(K * N * i, b_shape, b_strides);
float* ci = out_ptr + M * N * i;
// Zero out blocks in a and b if needed
if (has_op_mask) {
mask_array(
a_mask_ptr,
ai,
block_size,
i,
M,
K,
a_transposed ? 1 : lda,
a_transposed ? lda : 1,
a_mask_shape,
a_mask_strides,
a_mask_bool);
mask_array(
b_mask_ptr,
bi,
block_size,
i,
K,
N,
b_transposed ? 1 : ldb,
b_transposed ? ldb : 1,
b_mask_shape,
b_mask_strides,
b_mask_bool);
}
// Do matmul
cblas_sgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
K,
a_transposed ? 1 : lda,
a_transposed ? lda : 1);
auto& b_mask = inputs[inputs.size() - 1];
mask_array(
b_mask,
bi,
block_size_,
i,
K,
N,
b_transposed ? 1 : ldb,
b_transposed ? ldb : 1);
}
K,
1.0, // alpha
ai,
lda,
bi,
ldb,
0.0, // beta
ci,
ldc);
// Do matmul
cblas_sgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
N,
K,
1.0, // alpha
ai,
lda,
bi,
ldb,
0.0, // beta
ci,
out.shape(-1) // ldc
);
// Zero out blocks in out
if (has_out_mask) {
mask_array(inputs[2], ci, block_size_, i, M, N, N, 1);
// Zero out blocks in out
if (has_out_mask) {
mask_array(
out_mask_ptr,
ci,
block_size,
i,
M,
N,
N,
1,
out_mask_shape,
out_mask_strides,
out_mask_bool);
}
}
});
if (a_copied) {
encoder.add_temporary(a);
}
if (b_copied) {
encoder.add_temporary(b);
}
}
@@ -220,7 +323,8 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];
auto check_transpose = [](const array& arr) {
std::vector<array> temps;
auto check_transpose = [s = stream(), &temps](const array& arr) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
if (stx == arr.shape(-1) && sty == 1) {
@@ -228,10 +332,10 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
} else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
return std::make_tuple(false, stx, temps.back());
}
};
@@ -246,8 +350,12 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return;
}
auto& encoder = cpu::get_command_encoder(stream());
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
encoder.set_output_array(out);
encoder.dispatch([out_ptr = out.data<float>(), size = out.size()]() {
std::fill_n(out_ptr, size, 0);
});
return;
}
@@ -272,29 +380,61 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
const uint32_t* lhs_indices_ptr = lhs_indices.data<uint32_t>();
const uint32_t* rhs_indices_ptr = rhs_indices.data<uint32_t>();
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(lhs_indices);
encoder.set_input_array(rhs_indices);
encoder.set_output_array(out);
auto ldc = out.shape(-1);
for (int i = 0; i < batch_size_out; i++) {
// Get index
uint32_t indx_A = lhs_indices_ptr[elem_to_loc(i, lhs_indices)];
uint32_t indx_B = rhs_indices_ptr[elem_to_loc(i, rhs_indices)];
encoder.dispatch([a_ptr = a.data<float>(),
b_ptr = b.data<float>(),
out_ptr = out.data<float>(),
M,
N,
K,
lda = lda,
ldb = ldb,
a_transposed = a_transposed,
b_transposed = b_transposed,
ldc,
lhs_indices_ptr,
rhs_indices_ptr,
lhs_indices_shape = lhs_indices.shape(),
lhs_indices_strides = lhs_indices.strides(),
rhs_indices_shape = rhs_indices.shape(),
rhs_indices_strides = rhs_indices.strides(),
batch_size_out,
matrix_stride_out,
batch_shape_A = std::move(batch_shape_A),
batch_shape_B = std::move(batch_shape_B),
batch_strides_A = std::move(batch_strides_A),
batch_strides_B = std::move(batch_strides_B)]() {
for (int i = 0; i < batch_size_out; i++) {
// Get index
uint32_t indx_A = lhs_indices_ptr[elem_to_loc(
i, lhs_indices_shape, lhs_indices_strides)];
uint32_t indx_B = rhs_indices_ptr[elem_to_loc(
i, rhs_indices_shape, rhs_indices_strides)];
cblas_sgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
N,
K,
1.0f, // alpha
a.data<float>() + elem_to_loc(indx_A, batch_shape_A, batch_strides_A),
lda,
b.data<float>() + elem_to_loc(indx_B, batch_shape_B, batch_strides_B),
ldb,
0.0f, // beta
out.data<float>() + matrix_stride_out * i,
out.shape(-1) // ldc
);
}
cblas_sgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
N,
K,
1.0f, // alpha
a_ptr + elem_to_loc(indx_A, batch_shape_A, batch_strides_A),
lda,
b_ptr + elem_to_loc(indx_B, batch_shape_B, batch_strides_B),
ldb,
0.0f, // beta
out_ptr + matrix_stride_out * i,
ldc);
}
});
encoder.add_temporaries(std::move(temps));
}
} // namespace mlx::core