Add groups to Conv1d (#948)

* Add conv1d grouped convs on CPU

* Add GPU support

* Parallelize inside metal kernel

* clenaup

* Update mlx/ops.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* New unfold kernel + remove unused code

* Remove copy and refactor

* Update vjp and reuse steel gemm

* Fixed groups on cpu

* Fix metal validation

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
This commit is contained in:
Rifur13 2024-04-27 09:24:57 -04:00 committed by GitHub
parent 86f495985b
commit c4a471c99d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 633 additions and 55 deletions

View File

@ -0,0 +1,123 @@
import argparse
import math
import os
import subprocess
import time
import mlx.core as mx
import numpy as np
import torch
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
device_name = device_name.decode("utf-8").strip("\n")
N_warmup = 10
N_iter_bench = 100
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
torch.mps.synchronize()
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_1D(strides=1, padding=0, groups=1):
def mx_conv_1D(a, b):
ys = []
for _ in range(N_iter_func):
y = mx.conv1d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_1D
def make_pt_conv_1D(strides=1, padding=0, groups=1):
@torch.no_grad()
def pt_conv_1D(a, b):
ys = []
for _ in range(N_iter_func):
y = torch.conv1d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
torch.mps.synchronize()
return ys
return pt_conv_1D
def bench_shape(N, iH, C, wH, O, strides, padding, np_dtype, groups):
scale = 1.0 / math.sqrt(wH * C)
a_np = np.random.uniform(0, 0.5, (N, iH, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, wH, int(C / groups))).astype(np_dtype)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 2, 1))).to("mps")
b_pt = torch.from_numpy(b_np.transpose((0, 2, 1))).to("mps")
torch.mps.synchronize()
f_mx = make_mx_conv_1D(strides, padding, groups)
f_pt = make_pt_conv_1D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv1d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv1d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, iH, C)}, {(O, wH, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 5, 32, 1, 2, 1),
(4, 32, 32, 5, 32, 1, 2, 2),
(4, 32, 32, 5, 32, 1, 2, 4),
(4, 32, 32, 5, 32, 1, 2, 8),
(4, 32, 32, 5, 32, 1, 2, 8),
(4, 32, 32, 5, 32, 1, 2, 16),
(4, 32, 32, 5, 32, 1, 2, 32),
(4, 32, 256, 5, 512, 1, 2, 2),
(4, 32, 256, 5, 512, 1, 2, 128),
(4, 32, 256, 5, 512, 1, 2, 256),
)
for dtype in dtypes:
print("(N, iH, C), (O, wH, C), dtype, stride, pads, groups, diff%")
for N, iH, C, wH, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, iH, C, wH, O, strides, padding, np_dtype, groups
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {iH:3d}, {C:3d}), ({O:3d}, {wH:2d}, {C:3d}), {dtype}, {strides:5d}, {padding:4d}, {groups:6d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@ -114,6 +114,15 @@ class array {
return array_desc_->strides;
};
/**
* Get the stride of the corresponding dimension.
*
* This function supports negative indexing and provides
* bounds checking. */
size_t strides(int dim) const {
return strides().at(dim < 0 ? dim + ndim() : dim);
};
/** Get the arrays data type. */
Dtype dtype() const {
return array_desc_->dtype;

View File

@ -38,11 +38,15 @@ void slow_conv_1D(
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
const int C = in.shape(2); // Input channels
const int oH = out.shape(1); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(2); // In channels
const int wH = wt.shape(1); // Weight spatial dim
const int groups = C / wt.shape(2);
const int C_per_group = wt.shape(2);
const int O_per_group = O / groups;
const size_t in_stride_N = in.strides()[0];
const size_t in_stride_H = in.strides()[1];
const size_t in_stride_C = in.strides()[2];
@ -57,7 +61,8 @@ void slow_conv_1D(
for (int n = 0; n < N; ++n) {
for (int oh = 0; oh < oH; ++oh) {
for (int o = 0; o < O; ++o) {
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
const T* filter_wt_ptr = start_wt_ptr + o * wt_stride_O;
float r = 0.;
@ -70,10 +75,10 @@ void slow_conv_1D(
auto ih_div = std::div(ih, in_dilation[0]);
if (ih >= 0 && ih < iH && ih_div.rem == 0) {
for (int c = 0; c < C; ++c) {
for (int c = g * C_per_group; c < (g + 1) * C_per_group; ++c) {
r += static_cast<float>(
in_ptr[ih_div.quot * in_stride_H + c * in_stride_C]) *
static_cast<float>(wt_ptr[c * wt_stride_C]);
static_cast<float>(wt_ptr[(c % C_per_group) * wt_stride_C]);
} // c
} // ih check
@ -81,11 +86,11 @@ void slow_conv_1D(
out_ptr[oh * out_stride_H + o * out_stride_O] = static_cast<T>(r);
} // o
} // g
} // oh
in_ptr += in_stride_N;
out_ptr += out_stride_N;
} // n
}
@ -366,11 +371,15 @@ void explicit_gemm_conv_1D_cpu(
const std::vector<int>& wt_dilation) {
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = in.shape(1); // Input spatial dim
const int C = in.shape(2); // Input channels
const int oH = out.shape(1); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(2); // In channels
const int wH = wt.shape(1); // Weight spatial dim
const int groups = C / wt.shape(2);
const int C_per_group = wt.shape(2);
const int O_per_group = O / groups;
auto conv_dtype = float32;
// Pad input
@ -402,6 +411,11 @@ void explicit_gemm_conv_1D_cpu(
in_padded.strides()[1],
in_padded.strides()[2]};
auto flags = in_padded.flags();
if (groups > 1) {
// Transpose the last two dimensions for grouped convolutions
std::swap(strided_shape[2], strided_shape[3]);
std::swap(strided_strides[2], strided_strides[3]);
}
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
@ -416,7 +430,19 @@ void explicit_gemm_conv_1D_cpu(
auto gemm_wt = wt;
auto gemm_out = out;
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
if (groups > 1) {
// Transpose the last two dimensions for grouped convolutions
array wt_transpose(
{wt.shape(0), wt.shape(2), wt.shape(1)}, wt.dtype(), nullptr, {});
wt_transpose.copy_shared_buffer(
wt,
{wt.strides(0), wt.strides(2), wt.strides(1)},
wt.flags(),
wt.size(),
0);
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
copy(wt_transpose, gemm_wt, CopyType::General);
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
@ -428,21 +454,22 @@ void explicit_gemm_conv_1D_cpu(
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
}
for (int g = 0; g < groups; ++g) {
// Perform gemm
cblas_sgemm(
CblasRowMajor,
CblasNoTrans, // no trans A
CblasTrans, // transB
strided_reshape[0], // M
O, // N
strided_reshape[1], // K
O_per_group, // N
C_per_group * wH, // K
1.0f, // alpha
in_strided.data<float>(),
strided_reshape[1], // lda
gemm_wt.data<float>(),
strided_reshape[1], // ldb
in_strided.data<float>() + g * C_per_group * wH, // A
wH * C, // lda
gemm_wt.data<float>() + g * O_per_group * C_per_group * wH, // B
wH * C_per_group, // ldb
0.0f, // beta
gemm_out.data<float>(),
gemm_out.data<float>() + g * O_per_group, // C
O // ldc
);
@ -450,6 +477,7 @@ void explicit_gemm_conv_1D_cpu(
if (out.dtype() != float32) {
copy(gemm_out, out, CopyType::Vector);
}
}
}
void explicit_gemm_conv_2D_cpu(

View File

@ -89,6 +89,90 @@ void explicit_gemm_conv_ND_gpu(
/*copies = */ copies);
}
template <int N>
void explicit_gemm_conv_group_ND_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<N>& conv_params) {
const int groups = conv_params.groups;
const int C_per_group = conv_params.C / conv_params.groups;
const int O_per_group = conv_params.O / conv_params.groups;
// Get gemm shapes
const int implicit_M = out.size() / conv_params.O;
const int implicit_K = wt.size() / conv_params.O;
const int implicit_N = O_per_group;
int kernel_size = 1;
for (int i = 0; i < N; ++i) {
kernel_size *= conv_params.wS[i];
}
// Prepare unfolding array
std::vector<int> unfolded_shape{implicit_M, implicit_K * groups};
array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
in_unfolded.set_data(allocator::malloc_or_wait(in_unfolded.nbytes()));
// Prepare unfolding kernel
std::ostringstream kname;
kname << "naive_unfold_transpose_nd_" << type_to_name(in_unfolded) << "_"
<< N;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(in_unfolded, 1);
compute_encoder->setBytes(&conv_params, sizeof(conv_params), 2);
// Launch unfolding kernel
int tgp_x = std::min(conv_params.C, 64);
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
int tgp_y = 256 / tgp_x;
MTL::Size group_dims = MTL::Size(tgp_x, tgp_y, 1);
MTL::Size grid_dims = MTL::Size(
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
compute_encoder->dispatchThreads(grid_dims, group_dims);
// Transpose kernel weights so that we can slice them by contiguous chunks
// of channel groups.
array wt_view(
{wt.shape(0), C_per_group, kernel_size}, wt.dtype(), nullptr, {});
wt_view.copy_shared_buffer(
wt,
{wt.strides(0), 1, static_cast<size_t>(C_per_group)},
wt.flags(),
wt.size());
// Materialize
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {});
copy_gpu(wt_view, wt_transpose, CopyType::General, s);
// Perform gemm
std::vector<array> copies = {in_unfolded, wt_view, wt_transpose};
return steel_matmul_conv_groups(
s,
d,
/*a = */ in_unfolded,
/*b = */ wt_transpose,
/*c = */ out,
/*M = */ implicit_M,
/*N = */ implicit_N,
/*K = */ implicit_K,
/*a_cols = */ implicit_K * groups,
/*b_cols = */ implicit_K,
/*out_cols = */ implicit_N * groups,
/*a_transposed = */ false,
/*b_transposed = */ true,
/* groups = */ groups,
/*copies = */ copies);
}
void conv_1D_gpu(
const Stream& s,
metal::Device& d,
@ -99,6 +183,7 @@ void conv_1D_gpu(
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
int groups,
bool flip) {
// Make conv params
MLXConvParams<1> conv_params{
@ -118,11 +203,15 @@ void conv_1D_gpu(
{wt.strides()[0], wt.strides()[1], wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2]},
/* const int groups = */ 1,
/* const int groups = */ groups,
/* const bool flip = */ flip};
// Direct to explicit gemm conv
if (groups > 1) {
return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
} else {
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
void slow_conv_2D_gpu(
@ -721,6 +810,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel_strides_,
kernel_dilation_,
input_dilation_,
groups_,
flip_);
}
// Throw error

View File

@ -33,7 +33,7 @@ template <typename T, int N>
// Set out
out += gid.z * filter_size + gid.y * (params->C);
// Corrdinates in input
// Coordinates in input
int is[N] = {0};
// gid.z: N oS (Batch and row in unfolded output)
@ -75,12 +75,81 @@ template <typename T, int N>
} else {
out[gid.x] = T(0);
}
}
// This kernel unfolds the input array of size (N, *spatial_dims, C)
// into an array of size (N x *spatial_dims, C x *kernel_dims).
template <typename T, int N>
[[kernel]] void naive_unfold_transpose_Nd(
const device T* in [[buffer(0)]],
device T* out [[buffer(1)]],
const constant MLXConvParams<N>* params [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
int filter_size = params->C;
for(short i = 0; i < N; i++) filter_size *= params->wS[i];
int out_pixels = 1;
for(short i = 0; i < N; i++) out_pixels *= params->oS[i];
// Set out
out += gid.z * filter_size + gid.x * (filter_size / params->C);
// Coordinates in input
int is[N] = {0};
// gid.z: N oS (Batch and row in unfolded output)
// gid.y: wS (Filter location to unfold input)
// gid.x: C (channel)
int n = (gid.z) / out_pixels;
int oS = (gid.z) % out_pixels;
int wS = gid.y;
bool valid = n < params->N;
// Unroll dimensions
for (int i = N - 1; i >= 0; --i) {
int os_ = (oS % params->oS[i]);
int ws_ = (wS % params->wS[i]);
ws_ = params->flip ? params->wS[i] - ws_ - 1 : ws_;
int is_ = os_ * params->str[i] - params->pad[i] + ws_ * params->kdil[i];
int is_max = 1 + params->idil[i] * (params->iS[i] - 1);
valid &= is_ >= 0 && is_ < is_max && (is_ % params->idil[i] == 0);
is[i] = is_ / params->idil[i];
oS /= params->oS[i];
wS /= params->wS[i];
out += ws_ * params->str[i];
}
if(valid) {
size_t in_offset = n * params->in_strides[0];
for(int i = 0; i < N; ++i) {
in_offset += is[i] * params->in_strides[i + 1];
}
out[0] = in[in_offset + gid.x];
} else {
out[0] = T(0);
}
}
#define instantiate_naive_unfold_nd(name, itype, n) \
template [[host_name("naive_unfold_nd_" #name "_" #n)]] \
[[kernel]] void naive_unfold_Nd( \
const device itype* in [[buffer(0)]], \
device itype* out [[buffer(1)]], \
const constant MLXConvParams<n>* params [[buffer(2)]], \
uint3 gid [[thread_position_in_grid]]); \
template [[host_name("naive_unfold_transpose_nd_" #name "_" #n)]] \
[[kernel]] void naive_unfold_transpose_Nd( \
const device itype* in [[buffer(0)]], \
device itype* out [[buffer(1)]], \
const constant MLXConvParams<n>* params [[buffer(2)]], \

View File

@ -260,6 +260,110 @@ inline auto collapse_batches(const array& a, const array& b, const array& c) {
// Steel matmul fallback
///////////////////////////////////////////////////////////////////////////////
void steel_matmul_conv_groups(
const Stream& s,
metal::Device& d,
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
int lda,
int ldb,
int ldd,
bool transpose_a,
bool transpose_b,
int groups,
std::vector<array>& copies) {
using namespace mlx::steel;
/////////////////////////////////////////////////////////////////////////////
// Regular kernel dispatch
// Determine dispatch kernel
int bm = 32, bn = 32, bk = 16;
int wm = 2, wn = 2;
if ((size_t)M * N >= 1ul << 20) {
if (!transpose_a && transpose_b) {
bm = 64;
bn = (out.dtype() == float32) ? 64 : 32;
bk = (out.dtype() == float32) ? 16 : 32;
} else {
bm = 64;
bn = 64;
}
}
// Prepare kernel name
std::ostringstream kname;
kname << "steel_gemm_" << (transpose_a ? 't' : 'n')
<< (transpose_b ? 't' : 'n') << "_" << type_to_name(a) << "_"
<< type_to_name(out) << "_bm" << bm << "_bn" << bn << "_bk" << bk
<< "_wm" << wm << "_wn" << wn << "_MN_"
<< ((M % bm == 0 && N % bn == 0) ? "t" : "n") << "aligned" << "_K_"
<< ((K % bk == 0) ? "t" : "n") << "aligned";
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
// Use problem size to determine threadblock swizzle
int tn = (N + bn - 1) / bn;
int tm = (M + bm - 1) / bm;
// TODO: Explore device-based tuning for swizzle
int swizzle_log = 0; // tm >= 6 ? 3 : (tm <= 3 ? 0 : 2);
// Prepare steel matmul params
GEMMParams params{
/* const int M = */ M,
/* const int N = */ N,
/* const int K = */ K,
/* const int lda = */ lda,
/* const int ldb = */ ldb,
/* const int ldd = */ ldd,
/* const int tiles_n = */ tn,
/* const int tiles_m = */ tm,
/* const int batch_stride_a = */ K,
/* const int batch_stride_b = */ N * K,
/* const int batch_stride_d = */ N,
/* const int swizzle_log = */ swizzle_log,
/* const int gemm_k_iterations_aligned = */ (K / bk),
/* const int batch_ndim = */ 1};
// Prepare launch grid params
int tile = 1 << swizzle_log;
tm = (tm + tile - 1) / tile;
tn = tn * tile;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(tn, tm, groups);
std::vector<int> batch_shape = {1};
std::vector<size_t> batch_strides = {0};
// Launch kernel
compute_encoder.set_input_array(a, 0);
compute_encoder.set_input_array(b, 1);
compute_encoder.set_output_array(out, 3);
compute_encoder->setBytes(&params, sizeof(GEMMParams), 4);
compute_encoder->setBytes(
batch_shape.data(), sizeof(int) * batch_shape.size(), 6);
compute_encoder->setBytes(
batch_strides.data(), sizeof(size_t) * batch_strides.size(), 7);
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
// Clear copies
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
return;
}
void steel_matmul(
const Stream& s,
metal::Device& d,

View File

@ -12,6 +12,23 @@
namespace mlx::core {
void steel_matmul_conv_groups(
const Stream& s,
metal::Device& d,
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
int lda,
int ldb,
int ldd,
bool transpose_a,
bool transpose_b,
int groups,
std::vector<array>& copies);
void steel_matmul(
const Stream& s,
metal::Device& d,

View File

@ -320,7 +320,7 @@ array reshape(
"[reshape] Cannot infer the shape of an empty array");
}
// Check the the reshaping is valid
// Check that the reshaping is valid
if (a.size() != size) {
std::ostringstream msg;
msg << "[reshape] Cannot reshape array of size " << a.size()
@ -2947,7 +2947,8 @@ inline std::vector<int> conv_out_shape(
return out_shape;
}
inline void run_conv_checks(const array& in, const array& wt, int n_dim) {
inline void
run_conv_checks(const array& in, const array& wt, int n_dim, int groups) {
if (!issubdtype(in.dtype(), floating)) {
std::ostringstream msg;
msg << "[conv] Invalid input array with type " << in.dtype() << "."
@ -2972,11 +2973,35 @@ inline void run_conv_checks(const array& in, const array& wt, int n_dim) {
throw std::invalid_argument(msg.str());
}
if (in.shape(n_dim + 1) != wt.shape(n_dim + 1)) {
if (in.shape(n_dim + 1) % groups != 0) {
std::ostringstream msg;
msg << "[conv] The input channels must be divisible by the number"
<< " of groups. Got input with shape " << in.shape() << " and "
<< groups << " groups.";
throw std::invalid_argument(msg.str());
}
if (groups > 1 && wt.shape(0) % groups != 0) {
std::ostringstream msg;
msg << "[conv] If groups > 1, the output channels must be divisible by the number"
<< " of groups. Got " << wt.shape(0) << " output channels and "
<< groups << " groups.";
throw std::invalid_argument(msg.str());
}
if (in.shape(n_dim + 1) != (groups * wt.shape(n_dim + 1))) {
std::ostringstream msg;
if (groups == 1) {
msg << "[conv] Expect the input channels in the input"
<< " and weight array to match but got shapes -"
<< " input: " << in.shape() << " and weight: " << wt.shape();
} else {
msg << "Given groups=" << groups << " and weights of shape " << wt.shape()
<< ", expected to have " << (groups * wt.shape(n_dim + 1))
<< " input channels but got " << in.shape(n_dim + 1)
<< " input channels instead.";
}
throw std::invalid_argument(msg.str());
}
}
@ -3039,8 +3064,9 @@ array conv_general(
bool flip /* = false */,
StreamOrDevice s /* = {} */) {
// Run checks
if (groups != 1) {
throw std::invalid_argument("[conv] Cannot handle groups != 1 yet");
if (groups != 1 && in.ndim() != 3) {
throw std::invalid_argument(
"[conv] Can only handle groups != 1 in 1D convolutions.");
}
int spatial_dims = in.ndim() - 2;
@ -3052,7 +3078,7 @@ array conv_general(
}
// Run checks
run_conv_checks(in, wt, spatial_dims);
run_conv_checks(in, wt, spatial_dims, groups);
// Type promotion
auto out_type = promote_types(in.dtype(), wt.dtype());

View File

@ -831,6 +831,11 @@ std::vector<array> Convolution::vjp(
assert(primals.size() == 2);
std::vector<array> grads;
if (groups_ != 1) {
throw std::invalid_argument(
"[Convolution] Backward pass not implemented for groups > 1.");
}
// Collect info
auto& in = primals[0];
auto& wt = primals[1];

View File

@ -77,7 +77,9 @@ class TestConv(mlx_tests.MLXTestCase):
np_dtype = getattr(np, dtype)
np.random.seed(0)
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, int(C / groups))).astype(
np_dtype
)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt, wt_pt = map(
@ -119,6 +121,12 @@ class TestConv(mlx_tests.MLXTestCase):
):
run_conv1D(N, C, O, iH, kH, stride, padding, dtype=dtype)
# Groups tests
N, C, O = (4, 32, 64)
iH, kH, stride, padding = (31, 5, 1, 2)
for group in (1, 2, 4, 8, 16, 32):
run_conv1D(N, C, O, iH, kH, stride=1, padding=1, groups=group, dtype=dtype)
# Strided inputs tests
for tpose_in, tpose_wt in (
((0, 2, 1), (0, 1, 2)),

View File

@ -3228,3 +3228,102 @@ TEST_CASE("test meshgrid") {
CHECK(array_equal(out[0], expected_zero).item<bool>());
CHECK(array_equal(out[1], expected_one).item<bool>());
}
TEST_CASE("test conv1d") {
auto in = astype(
array(
{0.5488135,
0.71518937,
0.60276338,
0.54488318,
0.4236548,
0.64589411},
{1, 3, 2}),
float16);
int kernel = 3;
int stride = 1;
int padding = 1;
{
int groups = 1;
auto wt = astype(
array(
{
0.43758721, 0.891773, 0.96366276, 0.38344152,
0.79172504, 0.52889492,
0.56804456, 0.92559664, 0.07103606, 0.0871293,
0.0202184, 0.83261985,
0.77815675, 0.87001215, 0.97861834, 0.79915856,
0.46147936, 0.78052918,
0.11827443, 0.63992102, 0.14335329, 0.94466892,
0.52184832, 0.41466194
},
{4, 3, 2}),
float16);
auto expected = array(
{1.5685,
0.5672,
1.8121,
1.2948,
2.3448,
1.6104,
2.7743,
1.6126,
1.4056,
0.9331,
1.8739,
1.0909},
{1, 3, 4});
auto out = conv1d(in, wt, stride, padding, /* dilation= */ 1, groups);
CHECK(allclose(out, expected, /* rtol = */ 1.0e-3).item<bool>());
}
{
int groups = 2;
auto wt = array(
{0.43758721,
0.891773,
0.96366276,
0.38344152,
0.79172504,
0.52889492,
0.56804456,
0.92559664,
0.07103606,
0.0871293,
0.0202184,
0.83261985
},
{4, 3, 1});
auto expected = array(
{1.0703,
0.7533,
0.7007,
0.4681,
1.1859,
0.9117,
0.9565,
0.6111,
0.6416,
0.5665,
0.9074,
0.0605},
{1, 3, 4});
auto out = conv1d(in, wt, stride, padding, /* dilation= */ 1, groups);
CHECK(allclose(out, expected, /* rtol = */ 1.0e-3).item<bool>());
}
}