mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 17:31:16 +08:00
CUDA backend: argreduce (#2270)
This commit is contained in:
parent
c9fa68664a
commit
ccf78f566c
@ -6,6 +6,7 @@
|
|||||||
target_sources(
|
target_sources(
|
||||||
mlx
|
mlx
|
||||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_contiguous.cu
|
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_contiguous.cu
|
||||||
|
189
mlx/backend/cuda/arg_reduce.cu
Normal file
189
mlx/backend/cuda/arg_reduce.cu
Normal file
@ -0,0 +1,189 @@
|
|||||||
|
// Copyright © 2025 Apple Inc.
|
||||||
|
|
||||||
|
#include "mlx/backend/common/utils.h"
|
||||||
|
#include "mlx/backend/cuda/device.h"
|
||||||
|
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||||
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||||
|
#include "mlx/dtype_utils.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
|
#include <cooperative_groups.h>
|
||||||
|
#include <nvtx3/nvtx3.hpp>
|
||||||
|
#include <cub/block/block_load.cuh>
|
||||||
|
#include <cub/block/block_reduce.cuh>
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace cu {
|
||||||
|
|
||||||
|
namespace cg = cooperative_groups;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct IndexValPair {
|
||||||
|
uint32_t index;
|
||||||
|
T val;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ArgMin {
|
||||||
|
constexpr __device__ T init() {
|
||||||
|
return Limits<T>::max();
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ IndexValPair<T> operator()(
|
||||||
|
const IndexValPair<T>& best,
|
||||||
|
const IndexValPair<T>& current) {
|
||||||
|
if (best.val > current.val ||
|
||||||
|
(best.val == current.val && best.index > current.index)) {
|
||||||
|
return current;
|
||||||
|
} else {
|
||||||
|
return best;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int N>
|
||||||
|
__device__ IndexValPair<T>
|
||||||
|
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
if (vals[i] < best.val) {
|
||||||
|
best.val = vals[i];
|
||||||
|
best.index = offset + i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return best;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ArgMax {
|
||||||
|
constexpr __device__ T init() {
|
||||||
|
return Limits<T>::min();
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__ IndexValPair<T> operator()(
|
||||||
|
const IndexValPair<T>& best,
|
||||||
|
const IndexValPair<T>& current) {
|
||||||
|
if (best.val < current.val ||
|
||||||
|
(best.val == current.val && best.index > current.index)) {
|
||||||
|
return current;
|
||||||
|
} else {
|
||||||
|
return best;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int N>
|
||||||
|
__device__ IndexValPair<T>
|
||||||
|
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
if (vals[i] > best.val) {
|
||||||
|
best.val = vals[i];
|
||||||
|
best.index = offset + i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return best;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename Op, int BLOCK_DIM, int N_READS = 4>
|
||||||
|
__global__ void arg_reduce_general(
|
||||||
|
const T* in,
|
||||||
|
uint32_t* out,
|
||||||
|
size_t size,
|
||||||
|
const __grid_constant__ Shape shape,
|
||||||
|
const __grid_constant__ Strides in_strides,
|
||||||
|
const __grid_constant__ Strides out_strides,
|
||||||
|
int32_t ndim,
|
||||||
|
int64_t axis_stride,
|
||||||
|
int32_t axis_size) {
|
||||||
|
auto block = cg::this_thread_block();
|
||||||
|
|
||||||
|
int64_t index = cg::this_grid().block_rank();
|
||||||
|
if (index >= size) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t in_idx = elem_to_loc(index, shape.data(), in_strides.data(), ndim);
|
||||||
|
int64_t out_idx = elem_to_loc(index, shape.data(), out_strides.data(), ndim);
|
||||||
|
|
||||||
|
Op op;
|
||||||
|
T init = op.init();
|
||||||
|
IndexValPair<T> best{0, init};
|
||||||
|
|
||||||
|
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||||
|
T vals[N_READS];
|
||||||
|
auto tid = r * BLOCK_DIM + block.thread_index().z;
|
||||||
|
cub::LoadDirectBlocked(
|
||||||
|
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
|
||||||
|
best = op.reduce_many(best, vals, tid * N_READS);
|
||||||
|
}
|
||||||
|
|
||||||
|
typedef cub::BlockReduce<IndexValPair<T>, BLOCK_DIM> BlockReduceT;
|
||||||
|
__shared__ typename BlockReduceT::TempStorage temp;
|
||||||
|
|
||||||
|
best = BlockReduceT(temp).Reduce(best, op);
|
||||||
|
|
||||||
|
if (block.thread_rank() == 0) {
|
||||||
|
out[out_idx] = best.index;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace cu
|
||||||
|
|
||||||
|
void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
nvtx3::scoped_range r("ArgReduce::eval_gpu");
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
out.set_data(allocator::malloc(out.nbytes()));
|
||||||
|
auto& s = stream();
|
||||||
|
|
||||||
|
// Prepare the shapes, strides and axis arguments.
|
||||||
|
Shape shape = remove_index(in.shape(), axis_);
|
||||||
|
Strides in_strides = remove_index(in.strides(), axis_);
|
||||||
|
Strides out_strides = out.ndim() == in.ndim()
|
||||||
|
? remove_index(out.strides(), axis_)
|
||||||
|
: out.strides();
|
||||||
|
int64_t axis_stride = in.strides()[axis_];
|
||||||
|
int32_t axis_size = in.shape()[axis_];
|
||||||
|
int32_t ndim = shape.size();
|
||||||
|
|
||||||
|
// ArgReduce.
|
||||||
|
auto& encoder = cu::get_command_encoder(s);
|
||||||
|
encoder.set_input_array(in);
|
||||||
|
encoder.set_output_array(out);
|
||||||
|
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||||
|
MLX_SWITCH_REAL_TYPES_CHECKED(in.dtype(), "ArgReduce", CTYPE, {
|
||||||
|
using InType = cuda_type_t<CTYPE>;
|
||||||
|
constexpr uint32_t N_READS = 4;
|
||||||
|
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||||
|
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||||
|
dim3 block_dims{1, 1, BLOCK_DIM};
|
||||||
|
auto kernel = &cu::arg_reduce_general<
|
||||||
|
InType,
|
||||||
|
cu::ArgMax<InType>,
|
||||||
|
BLOCK_DIM,
|
||||||
|
N_READS>;
|
||||||
|
if (reduce_type_ == ArgReduce::ArgMin) {
|
||||||
|
kernel = &cu::arg_reduce_general<
|
||||||
|
InType,
|
||||||
|
cu::ArgMin<InType>,
|
||||||
|
BLOCK_DIM,
|
||||||
|
N_READS>;
|
||||||
|
}
|
||||||
|
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||||
|
in.data<InType>(),
|
||||||
|
out.data<uint32_t>(),
|
||||||
|
out.size(),
|
||||||
|
const_param(shape),
|
||||||
|
const_param(in_strides),
|
||||||
|
const_param(out_strides),
|
||||||
|
ndim,
|
||||||
|
axis_stride,
|
||||||
|
axis_size);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
// Copyright © 2025 Apple Inc.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <thrust/iterator/iterator_adaptor.h>
|
||||||
|
#include <thrust/iterator/iterator_facade.h>
|
||||||
|
|
||||||
|
namespace mlx::core::cu {
|
||||||
|
|
||||||
|
// RandomAccessIterator for strided access to array entries.
|
||||||
|
template <typename Iterator, typename Stride = int64_t>
|
||||||
|
class strided_iterator
|
||||||
|
: public thrust::
|
||||||
|
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
|
||||||
|
public:
|
||||||
|
using super_t =
|
||||||
|
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
|
||||||
|
|
||||||
|
using reference = typename super_t::reference;
|
||||||
|
using difference_type = typename super_t::difference_type;
|
||||||
|
|
||||||
|
__host__ __device__ strided_iterator(Iterator it, Stride stride)
|
||||||
|
: super_t(it), stride_(stride) {}
|
||||||
|
|
||||||
|
__host__ __device__ Stride stride() const {
|
||||||
|
return stride_;
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
friend class thrust::iterator_core_access;
|
||||||
|
|
||||||
|
__host__ __device__ bool equal(const strided_iterator& other) const {
|
||||||
|
return this->base() == other.base();
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__ __device__ void advance(difference_type n) {
|
||||||
|
this->base_reference() += n * stride_;
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__ __device__ void increment() {
|
||||||
|
this->base_reference() += stride_;
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__ __device__ void decrement() {
|
||||||
|
this->base_reference() -= stride_;
|
||||||
|
}
|
||||||
|
|
||||||
|
__host__ __device__ difference_type
|
||||||
|
distance_to(const strided_iterator& other) const {
|
||||||
|
const difference_type dist = other.base() - this->base();
|
||||||
|
_CCCL_ASSERT(
|
||||||
|
dist % stride() == 0,
|
||||||
|
"Underlying iterator difference must be divisible by the stride");
|
||||||
|
return dist / stride();
|
||||||
|
}
|
||||||
|
|
||||||
|
Stride stride_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace mlx::core::cu
|
@ -72,7 +72,6 @@ bool fast::ScaledDotProductAttention::use_fallback(
|
|||||||
}
|
}
|
||||||
|
|
||||||
NO_GPU(ArgPartition)
|
NO_GPU(ArgPartition)
|
||||||
NO_GPU(ArgReduce)
|
|
||||||
NO_GPU(BlockMaskedMM)
|
NO_GPU(BlockMaskedMM)
|
||||||
NO_GPU_MULTI(Compiled)
|
NO_GPU_MULTI(Compiled)
|
||||||
NO_GPU(Convolution)
|
NO_GPU(Convolution)
|
||||||
|
Loading…
Reference in New Issue
Block a user