mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-18 01:50:16 +08:00
rebase
This commit is contained in:
4
docs/build/html/_sources/install.rst
vendored
4
docs/build/html/_sources/install.rst
vendored
@@ -240,7 +240,7 @@ x86 Shell
|
||||
|
||||
.. _build shell:
|
||||
|
||||
If the ouptut of ``uname -p`` is ``x86`` then your shell is running as x86 via
|
||||
If the output of ``uname -p`` is ``x86`` then your shell is running as x86 via
|
||||
Rosetta instead of natively.
|
||||
|
||||
To fix this, find the application in Finder (``/Applications`` for iTerm,
|
||||
@@ -264,4 +264,4 @@ Also check that cmake is using the correct architecture:
|
||||
|
||||
If you see ``"x86_64"``, try re-installing ``cmake``. If you see ``"arm64"``
|
||||
but the build errors out with "Building for x86_64 on macOS is not supported."
|
||||
wipe your build cahce with ``rm -rf build/`` and try again.
|
||||
wipe your build cache with ``rm -rf build/`` and try again.
|
||||
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.linalg.eigh.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.linalg.eigh.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.linalg.eigh
|
||||
====================
|
||||
|
||||
.. currentmodule:: mlx.core.linalg
|
||||
|
||||
.. autofunction:: eigh
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.linalg.eigvalsh.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.linalg.eigvalsh.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.linalg.eigvalsh
|
||||
========================
|
||||
|
||||
.. currentmodule:: mlx.core.linalg
|
||||
|
||||
.. autofunction:: eigvalsh
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.metal.set_wired_limit.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.metal.set_wired_limit.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.metal.set\_wired\_limit
|
||||
================================
|
||||
|
||||
.. currentmodule:: mlx.core.metal
|
||||
|
||||
.. autofunction:: set_wired_limit
|
2
docs/build/html/_sources/python/linalg.rst
vendored
2
docs/build/html/_sources/python/linalg.rst
vendored
@@ -16,3 +16,5 @@ Linear Algebra
|
||||
cross
|
||||
qr
|
||||
svd
|
||||
eigvalsh
|
||||
eigh
|
||||
|
1
docs/build/html/_sources/python/metal.rst
vendored
1
docs/build/html/_sources/python/metal.rst
vendored
@@ -14,6 +14,7 @@ Metal
|
||||
get_cache_memory
|
||||
set_memory_limit
|
||||
set_cache_limit
|
||||
set_wired_limit
|
||||
clear_cache
|
||||
start_capture
|
||||
stop_capture
|
||||
|
23
docs/build/html/_sources/usage/compile.rst
vendored
23
docs/build/html/_sources/usage/compile.rst
vendored
@@ -33,12 +33,12 @@ Let's start with a simple example:
|
||||
# Compile the function
|
||||
compiled_fun = mx.compile(fun)
|
||||
|
||||
# Prints: array(2.36788, dtype=float32)
|
||||
# Prints: array(2.36788, dtype=float32)
|
||||
print(compiled_fun(x, y))
|
||||
|
||||
The output of both the regular function and the compiled function is the same
|
||||
up to numerical precision.
|
||||
|
||||
|
||||
The first time you call a compiled function, MLX will build the compute
|
||||
graph, optimize it, and generate and compile code. This can be relatively
|
||||
slow. However, MLX will cache compiled functions, so calling a compiled
|
||||
@@ -96,7 +96,7 @@ element-wise operations:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def gelu(x):
|
||||
def gelu(x):
|
||||
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
|
||||
|
||||
If you use this function with small arrays, it will be overhead bound. If you
|
||||
@@ -136,13 +136,6 @@ Now make an array, and benchmark both functions:
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
|
||||
.. note::
|
||||
|
||||
As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
|
||||
functions can still be helpful, but won't typically result in as large a
|
||||
speedup as compiling operations that run on the GPU.
|
||||
|
||||
|
||||
Debugging
|
||||
---------
|
||||
|
||||
@@ -287,7 +280,7 @@ to the function. In some cases this can be pretty inconvenient. Hence,
|
||||
print(fun(mx.array(1.0)))
|
||||
|
||||
|
||||
Compiling Training Graphs
|
||||
Compiling Training Graphs
|
||||
-------------------------
|
||||
|
||||
This section will step through how to use :func:`compile` with a simple example
|
||||
@@ -297,7 +290,7 @@ full forward, backward, and update with :func:`compile`.
|
||||
|
||||
To start, here is the simple example without any compilation:
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
@@ -330,7 +323,7 @@ To start, here is the simple example without any compilation:
|
||||
To compile the update we can put it all in a function and compile it with the
|
||||
appropriate input and output captures. Here's the same example but compiled:
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
@@ -355,7 +348,7 @@ appropriate input and output captures. Here's the same example but compiled:
|
||||
|
||||
# The state that will be captured as input and output
|
||||
state = [model.state, optimizer.state]
|
||||
|
||||
|
||||
@partial(mx.compile, inputs=state, outputs=state)
|
||||
def step(x, y):
|
||||
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
||||
@@ -410,7 +403,7 @@ Compiling transformed functions works just as expected:
|
||||
|
||||
In order to compile as much as possible, a transformation of a compiled
|
||||
function will not by default be compiled. To compile the transformed
|
||||
function simply pass it through :func:`compile`.
|
||||
function simply pass it through :func:`compile`.
|
||||
|
||||
You can also compile functions which themselves call compiled functions. A
|
||||
good practice is to compile the outer most function to give :func:`compile`
|
||||
|
@@ -25,7 +25,7 @@ Here is a simple example:
|
||||
|
||||
The output of :func:`grad` on :func:`sin` is simply another function. In this
|
||||
case it is the gradient of the sine function which is exactly the cosine
|
||||
function. To get the second derivative you can do:
|
||||
function. To get the second derivative you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
@@ -50,7 +50,7 @@ Automatic Differentiation
|
||||
.. _auto diff:
|
||||
|
||||
Automatic differentiation in MLX works on functions rather than on implicit
|
||||
graphs.
|
||||
graphs.
|
||||
|
||||
.. note::
|
||||
|
||||
@@ -114,7 +114,7 @@ way to do that is the following:
|
||||
|
||||
def loss_fn(params, x, y):
|
||||
w, b = params["weight"], params["bias"]
|
||||
h = w * x + b
|
||||
h = w * x + b
|
||||
return mx.mean(mx.square(h - y))
|
||||
|
||||
params = {"weight": mx.array(1.0), "bias": mx.array(0.0)}
|
||||
@@ -132,7 +132,7 @@ way to do that is the following:
|
||||
|
||||
Notice the tree structure of the parameters is preserved in the gradients.
|
||||
|
||||
In some cases you may want to stop gradients from propagating through a
|
||||
In some cases you may want to stop gradients from propagating through a
|
||||
part of the function. You can use the :func:`stop_gradient` for that.
|
||||
|
||||
|
||||
@@ -166,14 +166,14 @@ A naive way to add the elements from two sets of vectors is with a loop:
|
||||
Instead you can use :func:`vmap` to automatically vectorize the addition:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
# Vectorize over the second dimension of x and the
|
||||
# first dimension of y
|
||||
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(1, 0))
|
||||
|
||||
The ``in_axes`` parameter can be used to specify which dimensions of the
|
||||
corresponding input to vectorize over. Similarly, use ``out_axes`` to specify
|
||||
where the vectorized axes should be in the outputs.
|
||||
where the vectorized axes should be in the outputs.
|
||||
|
||||
Let's time these two different versions:
|
||||
|
||||
|
4
docs/build/html/_sources/usage/indexing.rst
vendored
4
docs/build/html/_sources/usage/indexing.rst
vendored
@@ -51,7 +51,7 @@ You can also use an :obj:`array` to index another :obj:`array`:
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(10)
|
||||
>>> idx = mx.array([5, 7])
|
||||
>>> idx = mx.array([5, 7])
|
||||
>>> arr[idx]
|
||||
array([5, 7], dtype=int32)
|
||||
|
||||
@@ -82,7 +82,7 @@ general, MLX has limited support for operations for which outputs
|
||||
operations which MLX does not yet support include :func:`numpy.nonzero` and the
|
||||
single input version of :func:`numpy.where`.
|
||||
|
||||
In Place Updates
|
||||
In Place Updates
|
||||
----------------
|
||||
|
||||
In place updates to indexed arrays are possible in MLX. For example:
|
||||
|
@@ -13,7 +13,7 @@ compute graph is recorded. The actual computation only happens if an
|
||||
:func:`eval` is performed.
|
||||
|
||||
MLX uses lazy evaluation because it has some nice features, some of which we
|
||||
describe below.
|
||||
describe below.
|
||||
|
||||
Transforming Compute Graphs
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
@@ -116,7 +116,7 @@ saving functions) will also evaluate the array.
|
||||
|
||||
Calling :func:`array.item` on a scalar array will also evaluate it. In the
|
||||
example above, printing the loss (``print(loss)``) or adding the loss scalar to
|
||||
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
|
||||
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
|
||||
these lines are before ``mx.eval(loss, model.parameters())`` then this
|
||||
will be a partial evaluation, computing only the forward pass.
|
||||
|
||||
|
8
docs/build/html/_sources/usage/numpy.rst
vendored
8
docs/build/html/_sources/usage/numpy.rst
vendored
@@ -3,10 +3,10 @@
|
||||
Conversion to NumPy and Other Frameworks
|
||||
========================================
|
||||
|
||||
MLX array supports conversion between other frameworks with either:
|
||||
MLX array supports conversion between other frameworks with either:
|
||||
|
||||
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
|
||||
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
|
||||
|
||||
Let's convert an array to NumPy and back.
|
||||
|
||||
@@ -66,7 +66,7 @@ even though no in-place operations on MLX memory are executed.
|
||||
PyTorch
|
||||
-------
|
||||
|
||||
.. warning::
|
||||
.. warning::
|
||||
|
||||
PyTorch Support for :obj:`memoryview` is experimental and can break for
|
||||
multi-dimensional arrays. Casting to NumPy first is advised for now.
|
||||
|
@@ -64,4 +64,4 @@ Other gradient transformations include :func:`vjp` for vector-Jacobian products
|
||||
and :func:`jvp` for Jacobian-vector products.
|
||||
|
||||
Use :func:`value_and_grad` to efficiently compute both a function's output and
|
||||
gradient with respect to the function's input.
|
||||
gradient with respect to the function's input.
|
||||
|
@@ -8,33 +8,33 @@ Saving and Loading Arrays
|
||||
MLX supports multiple array serialization formats.
|
||||
|
||||
.. list-table:: Serialization Formats
|
||||
:widths: 20 8 25 25
|
||||
:widths: 20 8 25 25
|
||||
:header-rows: 1
|
||||
|
||||
* - Format
|
||||
- Extension
|
||||
* - Format
|
||||
- Extension
|
||||
- Function
|
||||
- Notes
|
||||
* - NumPy
|
||||
- ``.npy``
|
||||
- Notes
|
||||
* - NumPy
|
||||
- ``.npy``
|
||||
- :func:`save`
|
||||
- Single arrays only
|
||||
* - NumPy archive
|
||||
- ``.npz``
|
||||
* - NumPy archive
|
||||
- ``.npz``
|
||||
- :func:`savez` and :func:`savez_compressed`
|
||||
- Multiple arrays
|
||||
- Multiple arrays
|
||||
* - Safetensors
|
||||
- ``.safetensors``
|
||||
- ``.safetensors``
|
||||
- :func:`save_safetensors`
|
||||
- Multiple arrays
|
||||
* - GGUF
|
||||
- ``.gguf``
|
||||
- Multiple arrays
|
||||
* - GGUF
|
||||
- ``.gguf``
|
||||
- :func:`save_gguf`
|
||||
- Multiple arrays
|
||||
|
||||
The :func:`load` function will load any of the supported serialization
|
||||
formats. It determines the format from the extensions. The output of
|
||||
:func:`load` depends on the format.
|
||||
:func:`load` depends on the format.
|
||||
|
||||
Here's an example of saving a single array to a file:
|
||||
|
||||
|
@@ -20,7 +20,7 @@ Both ``a`` and ``b`` live in unified memory.
|
||||
|
||||
In MLX, rather than moving arrays to devices, you specify the device when you
|
||||
run the operation. Any device can perform any operation on ``a`` and ``b``
|
||||
without needing to move them from one memory location to another. For example:
|
||||
without needing to move them from one memory location to another. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
Reference in New Issue
Block a user