This commit is contained in:
CircleCI Docs
2025-07-01 22:14:26 +00:00
parent 35c20e6c56
commit cfe36c4c52
533 changed files with 2735 additions and 2574 deletions

View File

@@ -8,23 +8,26 @@ MLX supports writing custom Metal kernels through the Python and C++ APIs.
Simple Example
--------------
.. currentmodule:: mlx.core
Let's write a custom kernel that computes ``exp`` elementwise:
.. code-block:: python
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
"""
source = """
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp",
input_names=["inp"],
output_names=["out"],
source=source,
)
kernel = mx.fast.metal_kernel(
name="myexp",
input_names=["inp"],
output_names=["out"],
source=source,
)
def exp_elementwise(a: mx.array):
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
@@ -39,8 +42,13 @@ Let's write a custom kernel that computes ``exp`` elementwise:
b = exp_elementwise(a)
assert mx.allclose(b, mx.exp(a))
Every time you make a kernel, a new Metal library is created and possibly
JIT compiled. To reduce the overhead from that, build the kernel once with
:func:`fast.metal_kernel` and then use it many times.
.. note::
We are only required to pass the body of the Metal kernel in ``source``.
Only pass the body of the Metal kernel in ``source``. The function
signature is generated automatically.
The full function signature will be generated using:
@@ -78,44 +86,51 @@ Putting this all together, the generated function signature for ``myexp`` is as
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads <https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_ function.
This means we will launch ``mx.prod(grid)`` threads, subdivided into ``threadgroup`` size threadgroups.
For optimal performance, each thread group dimension should be less than or equal to the corresponding grid dimension.
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads
<https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_
function. This means we will launch ``mx.prod(grid)`` threads, subdivided into
``threadgroup`` size threadgroups. For optimal performance, each thread group
dimension should be less than or equal to the corresponding grid dimension.
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
Passing ``verbose=True`` to :func:`ast.metal_kernel.__call__` will print the
generated code for debugging purposes.
Using Shape/Strides
-------------------
``mx.fast.metal_kernel`` supports an argument ``ensure_row_contiguous`` which is ``True`` by default.
This will copy the ``mx.array`` inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
Generally this makes writing the kernel easier, since we don't have to worry about gaps or the ordering of the dims
when indexing.
:func:`fast.metal_kernel` supports an argument ``ensure_row_contiguous`` which
is ``True`` by default. This will copy the array inputs if needed
before the kernel is launched to ensure that the memory layout is row
contiguous. Generally this makes writing the kernel easier, since we don't
have to worry about gaps or the ordering of the dims when indexing.
If we want to avoid this copy, ``metal_kernel`` automatically passes ``a_shape``, ``a_strides`` and ``a_ndim`` for each
input array ``a`` if any are present in ``source``.
We can then use MLX's built in indexing utils to fetch the right elements for each thread.
If we want to avoid this copy, :func:`fast.metal_kernel` automatically passes
``a_shape``, ``a_strides`` and ``a_ndim`` for each input array ``a`` if any are
present in ``source``. We can then use MLX's built in indexing utils to fetch
the right elements for each thread.
Let's convert ``myexp`` above to support arbitrarily strided arrays without relying on a copy from ``ensure_row_contiguous``:
Let's convert ``myexp`` above to support arbitrarily strided arrays without
relying on a copy from ``ensure_row_contiguous``:
.. code-block:: python
source = """
uint elem = thread_position_in_grid.x;
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
T tmp = inp[loc];
// Output arrays are always row contiguous
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source
)
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
T tmp = inp[loc];
// Output arrays are always row contiguous
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source
)
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
@@ -142,137 +157,139 @@ We'll start with the following MLX implementation using standard ops:
.. code-block:: python
def grid_sample_ref(x, grid):
N, H_in, W_in, _ = x.shape
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
def grid_sample_ref(x, grid):
N, H_in, W_in, _ = x.shape
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
ix_nw = mx.floor(ix).astype(mx.int32)
iy_nw = mx.floor(iy).astype(mx.int32)
ix_nw = mx.floor(ix).astype(mx.int32)
iy_nw = mx.floor(iy).astype(mx.int32)
ix_ne = ix_nw + 1
iy_ne = iy_nw
ix_ne = ix_nw + 1
iy_ne = iy_nw
ix_sw = ix_nw
iy_sw = iy_nw + 1
ix_sw = ix_nw
iy_sw = iy_nw + 1
ix_se = ix_nw + 1
iy_se = iy_nw + 1
ix_se = ix_nw + 1
iy_se = iy_nw + 1
nw = (ix_se - ix) * (iy_se - iy)
ne = (ix - ix_sw) * (iy_sw - iy)
sw = (ix_ne - ix) * (iy - iy_ne)
se = (ix - ix_nw) * (iy - iy_nw)
nw = (ix_se - ix) * (iy_se - iy)
ne = (ix - ix_sw) * (iy_sw - iy)
sw = (ix_ne - ix) * (iy - iy_ne)
se = (ix - ix_nw) * (iy - iy_nw)
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
I_nw *= mask_nw[..., None]
I_ne *= mask_ne[..., None]
I_sw *= mask_sw[..., None]
I_se *= mask_se[..., None]
I_nw *= mask_nw[..., None]
I_ne *= mask_ne[..., None]
I_sw *= mask_sw[..., None]
I_se *= mask_se[..., None]
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
return output
return output
Now let's use ``mx.custom_function`` together with ``mx.fast.metal_kernel``
Now let's use :func:`custom_function` together with :func:`fast.metal_kernel`
to write a fast GPU kernel for both the forward and backward passes.
First we'll implement the forward pass as a fused kernel:
.. code-block:: python
@mx.custom_function
def grid_sample(x, grid):
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
int gH = grid_shape[1];
int gW = grid_shape[2];
assert x.ndim == 4, "`x` must be 4D."
assert grid.ndim == 4, "`grid` must be 4D."
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
out_shape = (B, gN, gM, C)
uint grid_idx = elem / C * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
assert D == 2, "Last dim of `grid` must be size 2."
int ix_nw = floor(ix);
int iy_nw = floor(iy);
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
int gH = grid_shape[1];
int gW = grid_shape[2];
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
uint grid_idx = elem / C * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int batch_idx = elem / C / gH / gW * b_stride;
int channel_idx = elem % C;
int base_idx = batch_idx + channel_idx;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
"""
int batch_idx = elem / C / gH / gW * b_stride;
int channel_idx = elem % C;
int base_idx = batch_idx + channel_idx;
kernel = mx.fast.metal_kernel(
name="grid_sample",
input_names=["x", "grid"],
output_names=["out"],
source=source,
)
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
@mx.custom_function
def grid_sample(x, grid):
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
assert x.ndim == 4, "`x` must be 4D."
assert grid.ndim == 4, "`grid` must be 4D."
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
"""
kernel = mx.fast.metal_kernel(
name="grid_sample",
input_names=["x", "grid"],
output_names=["out"],
source=source,
)
outputs = kernel(
inputs=[x, grid],
template=[("T", x.dtype)],
output_shapes=[out_shape],
output_dtypes=[x.dtype],
grid=(np.prod(out_shape), 1, 1),
threadgroup=(256, 1, 1),
)
return outputs[0]
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
out_shape = (B, gN, gM, C)
assert D == 2, "Last dim of `grid` must be size 2."
outputs = kernel(
inputs=[x, grid],
template=[("T", x.dtype)],
output_shapes=[out_shape],
output_dtypes=[x.dtype],
grid=(np.prod(out_shape), 1, 1),
threadgroup=(256, 1, 1),
)
return outputs[0]
For a reasonably sized input such as:
.. code-block:: python
x.shape = (8, 1024, 1024, 64)
grid.shape = (8, 256, 256, 2)
x.shape = (8, 1024, 1024, 64)
grid.shape = (8, 256, 256, 2)
On an M1 Max, we see a big performance improvement:
@@ -281,11 +298,11 @@ On an M1 Max, we see a big performance improvement:
Grid Sample VJP
---------------
Since we decorated ``grid_sample`` with ``mx.custom_function``, we can now define
its custom vjp transform so MLX can differentiate it.
Since we decorated ``grid_sample`` with :func:`custom_function`, we can now
define its custom vjp transform so MLX can differentiate it.
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
requires a few extra ``mx.fast.metal_kernel`` features:
requires a few extra :func:`fast.metal_kernel` features:
* ``init_value=0``
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
@@ -299,128 +316,129 @@ We can then implement the backwards pass as follows:
.. code-block:: python
@grid_sample.vjp
def grid_sample_vjp(primals, cotangent, _):
x, grid = primals
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
// Pad C to the nearest larger simdgroup size multiple
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
assert D == 2, "Last dim of `grid` must be size 2."
int gH = grid_shape[1];
int gW = grid_shape[2];
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
// Pad C to the nearest larger simdgroup size multiple
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
int gH = grid_shape[1];
int gW = grid_shape[2];
uint grid_idx = elem / C_padded * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
uint grid_idx = elem / C_padded * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
int batch_idx = elem / C_padded / gH / gW * b_stride;
int channel_idx = elem % C_padded;
int base_idx = batch_idx + channel_idx;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
T gix = T(0);
T giy = T(0);
if (channel_idx < C) {
int cot_index = elem / C_padded * C + channel_idx;
T cot = cotangent[cot_index];
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
int batch_idx = elem / C_padded / gH / gW * b_stride;
int channel_idx = elem % C_padded;
int base_idx = batch_idx + channel_idx;
T I_nw = x[offset];
gix -= I_nw * (iy_se - iy) * cot;
giy -= I_nw * (ix_se - ix) * cot;
}
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
T gix = T(0);
T giy = T(0);
if (channel_idx < C) {
int cot_index = elem / C_padded * C + channel_idx;
T cot = cotangent[cot_index];
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
T I_ne = x[offset];
gix += I_ne * (iy_sw - iy) * cot;
giy -= I_ne * (ix - ix_sw) * cot;
}
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
T I_nw = x[offset];
gix -= I_nw * (iy_se - iy) * cot;
giy -= I_nw * (ix_se - ix) * cot;
}
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
T I_sw = x[offset];
gix -= I_sw * (iy - iy_ne) * cot;
giy += I_sw * (ix_ne - ix) * cot;
}
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
T I_ne = x[offset];
gix += I_ne * (iy_sw - iy) * cot;
giy -= I_ne * (ix - ix_sw) * cot;
}
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
T I_se = x[offset];
gix += I_se * (iy - iy_nw) * cot;
giy += I_se * (ix - ix_nw) * cot;
}
}
T I_sw = x[offset];
gix -= I_sw * (iy - iy_ne) * cot;
giy += I_sw * (ix_ne - ix) * cot;
}
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
T gix_mult = W / 2;
T giy_mult = H / 2;
T I_se = x[offset];
gix += I_se * (iy - iy_nw) * cot;
giy += I_se * (ix - ix_nw) * cot;
}
}
// Reduce across each simdgroup first.
// This is much faster than relying purely on atomics.
gix = simd_sum(gix);
giy = simd_sum(giy);
T gix_mult = W / 2;
T giy_mult = H / 2;
if (thread_index_in_simdgroup == 0) {
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
}
"""
kernel = mx.fast.metal_kernel(
name="grid_sample_grad",
input_names=["x", "grid", "cotangent"],
output_names=["x_grad", "grid_grad"],
source=source,
atomic_outputs=True,
)
// Reduce across each simdgroup first.
// This is much faster than relying purely on atomics.
gix = simd_sum(gix);
giy = simd_sum(giy);
@grid_sample.vjp
def grid_sample_vjp(primals, cotangent, _):
x, grid = primals
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
if (thread_index_in_simdgroup == 0) {
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
}
"""
kernel = mx.fast.metal_kernel(
name="grid_sample_grad",
input_names=["x", "grid", "cotangent"],
output_names=["x_grad", "grid_grad"],
source=source,
atomic_outputs=True,
)
# pad the output channels to simd group size
# so that our `simd_sum`s don't overlap.
simdgroup_size = 32
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
grid_size = B * gN * gM * C_padded
outputs = kernel(
inputs=[x, grid, cotangent],
template=[("T", x.dtype)],
output_shapes=[x.shape, grid.shape],
output_dtypes=[x.dtype, x.dtype],
grid=(grid_size, 1, 1),
threadgroup=(256, 1, 1),
init_value=0,
)
return outputs[0], outputs[1]
assert D == 2, "Last dim of `grid` must be size 2."
# pad the output channels to simd group size
# so that our `simd_sum`s don't overlap.
simdgroup_size = 32
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
grid_size = B * gN * gM * C_padded
outputs = kernel(
inputs=[x, grid, cotangent],
template=[("T", x.dtype)],
output_shapes=[x.shape, grid.shape],
output_dtypes=[x.dtype, x.dtype],
grid=(grid_size, 1, 1),
threadgroup=(256, 1, 1),
init_value=0,
)
return outputs[0], outputs[1]
There's an even larger speed up for the vjp:

View File

@@ -397,11 +397,11 @@ below.
std::ostringstream kname;
kname << "axpby_" << "general_" << type_to_name(out);
// Make sure the metal library is available
d.register_library("mlx_ext");
// Load the metal library
auto lib = d.get_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
auto kernel = d.get_kernel(kname.str(), lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);

View File

@@ -30,6 +30,16 @@ MLX is also available on conda-forge. To install MLX with conda do:
conda install conda-forge::mlx
CUDA
^^^^
MLX has a CUDA backend which you can use on any Linux platform with CUDA 12
and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
.. code-block:: shell
pip install mlx-cuda
Troubleshooting
^^^^^^^^^^^^^^^
@@ -65,6 +75,8 @@ Build Requirements
Python API
^^^^^^^^^^
.. _python install:
To build and install the MLX python library from source, first, clone MLX from
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
@@ -107,6 +119,8 @@ IDE:
C++ API
^^^^^^^
.. _cpp install:
Currently, MLX must be built and installed from source.
Similarly to the python library, to build and install the MLX C++ library start
@@ -185,6 +199,7 @@ should point to the path to the built metal library.
xcrun -sdk macosx --show-sdk-version
Binary Size Minimization
~~~~~~~~~~~~~~~~~~~~~~~~
@@ -213,6 +228,50 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
application. Once a kernel is compiled, it will be cached by the system. The
Metal kernel cache persists across reboots.
Linux
^^^^^
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
For example on Ubuntu, run the following:
.. code-block:: shell
apt-get update -y
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
From here follow the instructions to install either the :ref:`Python <python
install>` or :ref:`C++ <cpp install>` APIs.
CUDA
^^^^
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
and the CUDA toolkit. For example on Ubuntu, run the following:
.. code-block:: shell
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb
apt-get update -y
apt-get -y install cuda-toolkit-12-9
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
When building either the Python or C++ APIs make sure to pass the cmake flag
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
To build the C++ package run:
.. code-block:: shell
mkdir -p build && cd build
cmake .. -DMLX_BUILD_CUDA=ON && make -j
Troubleshooting
^^^^^^^^^^^^^^^

View File

@@ -107,6 +107,16 @@ same array:
>>> a
array([1, 2, 0], dtype=int32)
Note, unlike NumPy, updates to the same location are nondeterministic:
.. code-block:: shell
>>> a = mx.array([1, 2, 3])
>>> a[[0, 0]] = mx.array([4, 5])
The first element of ``a`` could be ``4`` or ``5``.
Transformations of functions which use in-place updates are allowed and work as
expected. For example: