docs update

This commit is contained in:
Awni Hannun
2024-01-03 20:14:05 -08:00
committed by CircleCI Docs
parent 8bea0a4eb8
commit d03b91923e
330 changed files with 40495 additions and 3726 deletions

View File

@@ -15,7 +15,7 @@ Introducing the Example
-----------------------
Let's say that you would like an operation that takes in two arrays,
``x`` and ``y``, scales them both by some coefficents ``alpha`` and ``beta``
``x`` and ``y``, scales them both by some coefficients ``alpha`` and ``beta``
respectively, and then adds them together to get the result
``z = alpha * x + beta * y``. Well, you can very easily do that by just
writing out a function as follows:
@@ -69,7 +69,7 @@ C++ API:
.. code-block:: C++
/**
* Scale and sum two vectors elementwise
* Scale and sum two vectors element-wise
* z = alpha * x + beta * y
*
* Follow numpy style broadcasting between x and y
@@ -230,7 +230,7 @@ Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
This operation now handles the following:
#. Upcast inputs and resolve the the output data type.
#. Upcast inputs and resolve the output data type.
#. Broadcast the inputs and resolve the output shape.
#. Construct the primitive :class:`Axpby` using the given stream, ``alpha``, and ``beta``.
#. Construct the output :class:`array` using the primitive and the inputs.
@@ -284,14 +284,14 @@ pointwise. This is captured in the templated function :meth:`axpby_impl`.
T alpha = static_cast<T>(alpha_);
T beta = static_cast<T>(beta_);
// Do the elementwise operation for each output
// Do the element-wise operation for each output
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
// Map linear indices to offsets in x and y
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
// We allocate the output to be contiguous and regularly strided
// (defaults to row major) and hence it doesn't need additonal mapping
// (defaults to row major) and hence it doesn't need additional mapping
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
}
}
@@ -305,7 +305,7 @@ if we encounter an unexpected type.
/** Fall back implementation for evaluation on CPU */
void Axpby::eval(const std::vector<array>& inputs, array& out) {
// Check the inputs (registered in the op while contructing the out array)
// Check the inputs (registered in the op while constructing the out array)
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
@@ -485,7 +485,7 @@ each data type.
instantiate_axpby(float32, float);
instantiate_axpby(float16, half);
instantiate_axpby(bflot16, bfloat16_t);
instantiate_axpby(bfloat16, bfloat16_t);
instantiate_axpby(complex64, complex64_t);
This kernel will be compiled into a metal library ``mlx_ext.metallib`` as we
@@ -537,7 +537,7 @@ below.
compute_encoder->setComputePipelineState(kernel);
// Kernel parameters are registered with buffer indices corresponding to
// those in the kernel decelaration at axpby.metal
// those in the kernel declaration at axpby.metal
int ndim = out.ndim();
size_t nelem = out.size();
@@ -568,7 +568,7 @@ below.
// Fix the 3D size of the launch grid (in terms of threads)
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
// Launch the grid with the given number of threads divded among
// Launch the grid with the given number of threads divided among
// the given threadgroups
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
@@ -581,7 +581,7 @@ to give us the active metal compute command encoder instead of building a
new one and calling :meth:`compute_encoder->end_encoding` at the end.
MLX keeps adding kernels (compute pipelines) to the active command encoder
until some specified limit is hit or the compute encoder needs to be flushed
for synchronization. MLX also handles enqueuing and commiting the associated
for synchronization. MLX also handles enqueuing and committing the associated
command buffers as needed. We suggest taking a deeper dive into
:class:`metal::Device` if you would like to study this routine further.
@@ -601,8 +601,8 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
// Forward mode diff that pushes along the tangents
// The jvp transform on the the primitive can built with ops
// that are scheduled on the same stream as the primtive
// The jvp transform on the primitive can built with ops
// that are scheduled on the same stream as the primitive
// If argnums = {0}, we only push along x in which case the
// jvp is just the tangent scaled by alpha
@@ -642,7 +642,7 @@ own :class:`Primitive`.
.. code-block:: C++
/** Vectorize primitve along given axis */
/** Vectorize primitive along given axis */
std::pair<array, int> Axpby::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
@@ -666,7 +666,7 @@ Let's look at the overall directory structure first.
| └── setup.py
* ``extensions/axpby/`` defines the C++ extension library
* ``extensions/mlx_sample_extensions`` sets out the strucutre for the
* ``extensions/mlx_sample_extensions`` sets out the structure for the
associated python package
* ``extensions/bindings.cpp`` provides python bindings for our operation
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
@@ -697,7 +697,7 @@ are already provided, adding our :meth:`axpby` becomes very simple!
py::kw_only(),
"stream"_a = py::none(),
R"pbdoc(
Scale and sum two vectors elementwise
Scale and sum two vectors element-wise
``z = alpha * x + beta * y``
Follows numpy style broadcasting between ``x`` and ``y``
@@ -840,7 +840,7 @@ This will result in a directory structure as follows:
| ...
When you try to install using the command ``python -m pip install .``
(in ``extensions/``), the package will be installed with the same strucutre as
(in ``extensions/``), the package will be installed with the same structure as
``extensions/mlx_sample_extensions`` and the C++ and metal library will be
copied along with the python binding since they are specified as ``package_data``.