Update batchnorm to have the running stats in parameters (#305)

This commit is contained in:
Angelos Katharopoulos
2023-12-28 14:31:10 -08:00
committed by GitHub
parent 040c3bafab
commit d29770eeaa
2 changed files with 65 additions and 37 deletions

View File

@@ -243,8 +243,15 @@ class BatchNorm(Module):
self.bias = mx.zeros((num_features,))
if self.track_running_stats:
self._running_mean = mx.zeros((num_features,))
self._running_var = mx.ones((num_features,))
self.running_mean = mx.zeros((num_features,))
self.running_var = mx.ones((num_features,))
self.freeze(keys=["running_mean", "running_var"], recurse=False)
def unfreeze(self, *args, **kwargs):
"""Wrap unfreeze to make sure that running_mean and var are always
frozen parameters."""
super().unfreeze(*args, **kwargs)
self.freeze(keys=["running_mean", "running_var"], recurse=False)
def _extra_repr(self):
return (
@@ -255,46 +262,47 @@ class BatchNorm(Module):
def _calc_stats(self, x: mx.array) -> Tuple[mx.array, mx.array]:
"""
Calculate the mean and variance of the input tensor.
Calculate the mean and variance of the input tensor across the batch
and spatial dimensions.
Args:
x (mx.array): Input tensor.
x (array): Input tensor.
Returns:
tuple: Tuple containing mean and variance.
"""
reduction_axes = tuple(range(0, x.ndim - 1))
means = mx.mean(x, axis=reduction_axes, keepdims=True)
mean = mx.mean(x, axis=reduction_axes, keepdims=True)
var = mx.var(x, axis=reduction_axes, keepdims=True)
if self.track_running_stats and self.training:
self._running_mean = (
1 - self.momentum
) * self._running_mean + self.momentum * means
self._running_var = (
1 - self.momentum
) * self._running_var + self.momentum * var
return means, var
return mean, var
def __call__(self, x: mx.array) -> mx.array:
"""
Forward pass of BatchNorm.
Args:
x (mx.array): Input tensor.
x (array): Input tensor.
Returns:
mx.array: Output tensor.
array: Normalized output tensor.
"""
if x.ndim < 2 or x.ndim > 4:
raise ValueError(
f"Expected input tensor to have 2, 3 or 4 dimensions, but got {x.ndim}"
)
if self.training or not self.track_running_stats:
means, var = self._calc_stats(x)
else:
means, var = self._running_mean, self._running_var
x = (x - means) * mx.rsqrt(var + self.eps)
# Calculate the mean and variance used to normalize the input x. If we
# are in training mode update the running stats if needed.
mean, var = self._calc_stats(x)
if self.training and self.track_running_stats:
mu = self.momentum
self.running_mean = (1 - mu) * self.running_mean + mu * mean
self.running_var = (1 - mu) * self.running_var + mu * var
elif self.track_running_stats:
mean = self.running_mean
var = self.running_var
x = (x - mean) * mx.rsqrt(var + self.eps)
return (self.weight * x + self.bias) if "weight" in self else x