mirror of
https://github.com/ml-explore/mlx.git
synced 2025-10-19 00:04:41 +08:00
Rename block sparse (#1149)
* block_sparse_mm to gather_mm * rename * nit * nit
This commit is contained in:
@@ -40,6 +40,15 @@ double scalar_to_double(Scalar s) {
|
||||
}
|
||||
|
||||
void init_ops(nb::module_& m) {
|
||||
// TODO, remove deprecation errors in a future release
|
||||
m.def("block_sparse_mm", [](nb::args, nb::kwargs) {
|
||||
throw std::invalid_argument(
|
||||
"block_sparse_mm is deprecated. Please use gather_mm which has the same signature");
|
||||
});
|
||||
m.def("block_sparse_qmm", [](nb::args, nb::kwargs) {
|
||||
throw std::invalid_argument(
|
||||
"block_sparse_qmm is deprecated. Please use gather_qmm which has the same signature");
|
||||
});
|
||||
m.def(
|
||||
"reshape",
|
||||
&reshape,
|
||||
@@ -3748,8 +3757,8 @@ void init_ops(nb::module_& m) {
|
||||
array: The dequantized version of ``w``
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"block_sparse_qmm",
|
||||
&block_sparse_qmm,
|
||||
"gater_qmm",
|
||||
&gather_qmm,
|
||||
nb::arg(),
|
||||
nb::arg(),
|
||||
"scales"_a,
|
||||
@@ -3762,12 +3771,12 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def block_sparse_qmm(x: array, w: array, /, scales: array, biases: array, lhs_indices: Optional[array] = None, rhs_indices: Optional[array] = None, transpose: bool = True, group_size: int = 64, bits: int = 4, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def gather_qmm(x: array, w: array, /, scales: array, biases: array, lhs_indices: Optional[array] = None, rhs_indices: Optional[array] = None, transpose: bool = True, group_size: int = 64, bits: int = 4, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Perform quantized matrix multiplication with matrix-level gather.
|
||||
|
||||
This operation is the quantized equivalent to :func:`block_sparse_mm`.
|
||||
Similar to :func:`block_sparse_mm`, the indices ``lhs_indices`` and
|
||||
This operation is the quantized equivalent to :func:`gather_mm`.
|
||||
Similar to :func:`gather_mm`, the indices ``lhs_indices`` and
|
||||
``rhs_indices`` contain flat indices along the batch dimensions (i.e.
|
||||
all but the last two dimensions) of ``x`` and ``w`` respectively.
|
||||
|
||||
@@ -3965,8 +3974,8 @@ void init_ops(nb::module_& m) {
|
||||
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"block_sparse_mm",
|
||||
&block_sparse_mm,
|
||||
"gather_mm",
|
||||
&gather_mm,
|
||||
nb::arg(),
|
||||
nb::arg(),
|
||||
"lhs_indices"_a = nb::none(),
|
||||
@@ -3974,20 +3983,24 @@ void init_ops(nb::module_& m) {
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def block_sparse_mm(a: array, b: array, /, lhs_indices: array, rhs_indices: array, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
"def gather_mm(a: array, b: array, /, lhs_indices: array, rhs_indices: array, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Matrix multiplication with matrix-level gather.
|
||||
|
||||
Performs a gather of the operands with the given indices followed by a (possibly batched) matrix multiplication of two arrays.
|
||||
This operation is more efficient than explicitly applying a :func:`take` followed by a :func:`matmul`.
|
||||
Performs a gather of the operands with the given indices followed by a
|
||||
(possibly batched) matrix multiplication of two arrays. This operation
|
||||
is more efficient than explicitly applying a :func:`take` followed by a
|
||||
:func:`matmul`.
|
||||
|
||||
The indices ``lhs_indices`` and ``rhs_indices`` contain flat indices along the batch dimensions (i.e. all but the last two dimensions) of ``a`` and ``b`` respectively.
|
||||
The indices ``lhs_indices`` and ``rhs_indices`` contain flat indices
|
||||
along the batch dimensions (i.e. all but the last two dimensions) of
|
||||
``a`` and ``b`` respectively.
|
||||
|
||||
For ``a`` with shape ``(A1, A2, ..., AS, M, K)``,
|
||||
``lhs_indices`` contains indices from the range ``[0, A1 * A2 * ... * AS)``
|
||||
For ``a`` with shape ``(A1, A2, ..., AS, M, K)``, ``lhs_indices``
|
||||
contains indices from the range ``[0, A1 * A2 * ... * AS)``
|
||||
|
||||
For ``b`` with shape ``(B1, B2, ..., BS, M, K)``,
|
||||
``rhs_indices`` contains indices from the range ``[0, B1 * B2 * ... * BS)``
|
||||
For ``b`` with shape ``(B1, B2, ..., BS, M, K)``, ``rhs_indices``
|
||||
contains indices from the range ``[0, B1 * B2 * ... * BS)``
|
||||
|
||||
Args:
|
||||
a (array): Input array.
|
||||
|
@@ -408,9 +408,9 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
with self.subTest(
|
||||
B=B, # Batch size
|
||||
D=D, # Dimension of mm
|
||||
n_kv_heads=n_kv_heads, # key-value heads
|
||||
factor=factor, # factor to get query heads
|
||||
qsl=qsl, # Query sequence length
|
||||
n_kv_heads=n_kv_heads, # key-value heads
|
||||
factor=factor, # factor to get query heads
|
||||
qsl=qsl, # Query sequence length
|
||||
ksl=ksl, # Key sequence length
|
||||
dtype=dtype # Data type
|
||||
):
|
||||
@@ -432,22 +432,22 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
k_np = np.random.uniform(-scale, scale, size=shape_keys).astype(np_dtype)
|
||||
v_np = np.random.uniform(-scale, scale, size=shape_values).astype(np_dtype)
|
||||
|
||||
# Rearrange to move heads up
|
||||
# Rearrange to move heads up
|
||||
q_np_reshape = q_np.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
|
||||
k_np_reshape = k_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
|
||||
v_np_reshape = v_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
|
||||
|
||||
# Do attn style matmul
|
||||
s_np = q_np_reshape @ k_np_reshape
|
||||
o_np = s_np @ v_np_reshape
|
||||
o_np = s_np @ v_np_reshape
|
||||
o_np = o_np.transpose(0, 3, 1, 2, 4).reshape(B, qsl, -1)
|
||||
|
||||
# Test mlx
|
||||
# Test mlx
|
||||
q_mx = mx.array(q_np)
|
||||
k_mx = mx.array(k_np)
|
||||
v_mx = mx.array(v_np)
|
||||
|
||||
# Rearrange to move heads up
|
||||
# Rearrange to move heads up
|
||||
q_mx_reshape = q_mx.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
|
||||
k_mx_reshape = k_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
|
||||
v_mx_reshape = v_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
|
||||
@@ -810,8 +810,8 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
|
||||
self.assertTrue(np.allclose(c_mx, c_np, atol=1e-5))
|
||||
|
||||
def test_block_sparse_matmul(self):
|
||||
def np_block_sparse_mm(a, b, lhs_indices=None, rhs_indices=None):
|
||||
def test_gather_matmul(self):
|
||||
def np_gather_mm(a, b, lhs_indices=None, rhs_indices=None):
|
||||
a = a.reshape((-1, a.shape[-2], a.shape[-1]))
|
||||
b = b.reshape((-1, b.shape[-2], b.shape[-1]))
|
||||
lhs_indices = lhs_indices or np.arange(a.shape[0])
|
||||
@@ -848,12 +848,12 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
out_np = np_block_sparse_mm(a_np, b_np, lhs_indices, rhs_indices)
|
||||
out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
|
||||
|
||||
lhs_indices_mx = None if lhs_indices is None else mx.array(lhs_indices)
|
||||
rhs_indices_mx = None if rhs_indices is None else mx.array(rhs_indices)
|
||||
|
||||
out_mx = mx.block_sparse_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
|
||||
out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
|
||||
|
||||
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
|
||||
|
||||
@@ -920,7 +920,7 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
lhs_indices = [0, 13, 12]
|
||||
rhs_indices = [0, 3, 5]
|
||||
|
||||
out_np = np_block_sparse_mm(a_np, b_np, lhs_indices, rhs_indices)
|
||||
out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
|
||||
|
||||
# MLX
|
||||
a_mx = a_mx.reshape((5, 1, 32, 32))
|
||||
@@ -932,7 +932,7 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
lhs_indices_mx = mx.array(lhs_indices)
|
||||
rhs_indices_mx = mx.array(rhs_indices)
|
||||
|
||||
out_mx = mx.block_sparse_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
|
||||
out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
|
||||
|
||||
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
|
||||
|
||||
@@ -946,17 +946,17 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
rhs_indices = [0, 2]
|
||||
|
||||
b_np_t = np.swapaxes(b_np, -1, -2)
|
||||
out_np = np_block_sparse_mm(a_np, b_np_t, lhs_indices, rhs_indices)
|
||||
out_np = np_gather_mm(a_np, b_np_t, lhs_indices, rhs_indices)
|
||||
|
||||
lhs_indices_mx = mx.array(lhs_indices)
|
||||
rhs_indices_mx = mx.array(rhs_indices)
|
||||
|
||||
b_mx_t = mx.swapaxes(b_mx, -1, -2)
|
||||
out_mx = mx.block_sparse_mm(a_mx, b_mx_t, lhs_indices_mx, rhs_indices_mx)
|
||||
out_mx = mx.gather_mm(a_mx, b_mx_t, lhs_indices_mx, rhs_indices_mx)
|
||||
|
||||
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
|
||||
|
||||
def test_block_sparse_matmul_grad(self):
|
||||
def test_gather_matmul_grad(self):
|
||||
|
||||
lhs_indices = mx.array([[7, 6], [4, 1], [0, 2]], dtype=mx.uint32)
|
||||
rhs_indices = mx.array([[2], [0], [1]], dtype=mx.uint32)
|
||||
@@ -977,7 +977,7 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
return a @ b
|
||||
|
||||
def f_test(a, b):
|
||||
return mx.block_sparse_mm(a, b, lhs_indices, rhs_indices)
|
||||
return mx.gather_mm(a, b, lhs_indices, rhs_indices)
|
||||
|
||||
a_mx = mx.random.normal((4, 2, 32, 32))
|
||||
b_mx = mx.random.normal((4, 1, 32, 32))
|
||||
|
@@ -277,7 +277,7 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
self.assertEqual(y_q.shape, y_hat.shape)
|
||||
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
|
||||
|
||||
def test_block_sparse_qmm(self):
|
||||
def test_gather_qmm(self):
|
||||
def quantize(w, transpose=True, group_size=64, bits=4):
|
||||
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits)
|
||||
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits)
|
||||
@@ -322,8 +322,8 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
if rhs_indices is not None:
|
||||
rhs_indices = mx.array(rhs_indices)
|
||||
|
||||
c1 = mx.block_sparse_mm(x, w_hat, lhs_indices, rhs_indices)
|
||||
c2 = mx.block_sparse_qmm(
|
||||
c1 = mx.gather_mm(x, w_hat, lhs_indices, rhs_indices)
|
||||
c2 = mx.gather_qmm(
|
||||
x,
|
||||
qw,
|
||||
s,
|
||||
@@ -390,7 +390,7 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
test_shape(32, 512, 32, transpose=False, **kwargs)
|
||||
test_shape(1, 512, 32, transpose=False, **kwargs)
|
||||
|
||||
def test_block_sparse_matmul_grad(self):
|
||||
def test_gather_matmul_grad(self):
|
||||
def quantize(w, transpose=True, group_size=64, bits=4):
|
||||
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits)
|
||||
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits)
|
||||
@@ -406,10 +406,10 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
w_hat, qw, s, b = quantize(w)
|
||||
|
||||
def f_ref(x, w, i1, i2):
|
||||
return mx.block_sparse_mm(x, w, i1, i2).sum()
|
||||
return mx.gather_mm(x, w, i1, i2).sum()
|
||||
|
||||
def f_test(x, qw, s, b, i1, i2):
|
||||
return mx.block_sparse_qmm(x, qw, s, b, i1, i2, transpose=True).sum()
|
||||
return mx.gather_qmm(x, qw, s, b, i1, i2, transpose=True).sum()
|
||||
|
||||
r1 = f_ref(x, w_hat, lhs_indices, rhs_indices)
|
||||
r2 = f_test(x, qw, s, b, lhs_indices, rhs_indices)
|
||||
|
Reference in New Issue
Block a user