mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-17 09:18:12 +08:00
docs up
This commit is contained in:

committed by
CircleCI Docs

parent
d03b91923e
commit
d67cd9230c
7
docs/build/html/_sources/index.rst
vendored
7
docs/build/html/_sources/index.rst
vendored
@@ -35,9 +35,10 @@ are the CPU and GPU.
|
||||
:caption: Usage
|
||||
:maxdepth: 1
|
||||
|
||||
quick_start
|
||||
unified_memory
|
||||
using_streams
|
||||
usage/quick_start
|
||||
usage/unified_memory
|
||||
usage/using_streams
|
||||
usage/numpy
|
||||
|
||||
.. toctree::
|
||||
:caption: Examples
|
||||
|
12
docs/build/html/_sources/indexing.rst
vendored
12
docs/build/html/_sources/indexing.rst
vendored
@@ -1,12 +0,0 @@
|
||||
.. _indexing:
|
||||
|
||||
Indexing Arrays
|
||||
===============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
For the most part, indexing an MLX :obj:`array` works the same as indexing a
|
||||
NumPy :obj:`numpy.ndarray`. See the `NumPy documentation
|
||||
<https://numpy.org/doc/stable/user/basics.indexing.html>`_ for more details on
|
||||
how that works
|
||||
|
@@ -1,59 +0,0 @@
|
||||
mlx.nn.Module
|
||||
=============
|
||||
|
||||
.. currentmodule:: mlx.nn
|
||||
|
||||
.. autoclass:: Module
|
||||
|
||||
|
||||
.. automethod:: __init__
|
||||
|
||||
|
||||
.. rubric:: Methods
|
||||
|
||||
.. autosummary::
|
||||
|
||||
~Module.__init__
|
||||
~Module.apply
|
||||
~Module.apply_to_modules
|
||||
~Module.children
|
||||
~Module.clear
|
||||
~Module.copy
|
||||
~Module.eval
|
||||
~Module.filter_and_map
|
||||
~Module.freeze
|
||||
~Module.fromkeys
|
||||
~Module.get
|
||||
~Module.is_module
|
||||
~Module.items
|
||||
~Module.keys
|
||||
~Module.leaf_modules
|
||||
~Module.load_weights
|
||||
~Module.modules
|
||||
~Module.named_modules
|
||||
~Module.parameters
|
||||
~Module.pop
|
||||
~Module.popitem
|
||||
~Module.save_weights
|
||||
~Module.setdefault
|
||||
~Module.train
|
||||
~Module.trainable_parameter_filter
|
||||
~Module.trainable_parameters
|
||||
~Module.unfreeze
|
||||
~Module.update
|
||||
~Module.update_modules
|
||||
~Module.valid_child_filter
|
||||
~Module.valid_parameter_filter
|
||||
~Module.values
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. rubric:: Attributes
|
||||
|
||||
.. autosummary::
|
||||
|
||||
~Module.training
|
||||
|
||||
|
@@ -1,8 +0,0 @@
|
||||
mlx.nn.losses.smooth\_l1\_loss
|
||||
==============================
|
||||
|
||||
.. currentmodule:: mlx.nn.losses
|
||||
|
||||
.. autoclass:: smooth_l1_loss
|
||||
|
||||
|
103
docs/build/html/_sources/usage/numpy.rst
vendored
Normal file
103
docs/build/html/_sources/usage/numpy.rst
vendored
Normal file
@@ -0,0 +1,103 @@
|
||||
.. _numpy:
|
||||
|
||||
Conversion to NumPy and Other Frameworks
|
||||
========================================
|
||||
|
||||
MLX array implements the `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
Let's convert an array to NumPy and back.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
|
||||
a = mx.arange(3)
|
||||
b = np.array(a) # copy of a
|
||||
c = mx.array(b) # copy of b
|
||||
|
||||
.. note::
|
||||
|
||||
Since NumPy does not support ``bfloat16`` arrays, you will need to convert to ``float16`` or ``float32`` first:
|
||||
``np.array(a.astype(mx.float32))``.
|
||||
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118 buffer format string does not match the dtype V item size 0.``
|
||||
|
||||
By default, NumPy copies data to a new array. This can be prevented by creating an array view:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = mx.arange(3)
|
||||
a_view = np.array(a, copy=False)
|
||||
print(a_view.flags.owndata) # False
|
||||
a_view[0] = 1
|
||||
print(a[0].item()) # 1
|
||||
|
||||
A NumPy array view is a normal NumPy array, except that it does not own its memory.
|
||||
This means writing to the view is reflected in the original array.
|
||||
|
||||
While this is quite powerful to prevent copying arrays, it should be noted that external changes to the memory of arrays cannot be reflected in gradients.
|
||||
|
||||
Let's demonstrate this in an example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def f(x):
|
||||
x_view = np.array(x, copy=False)
|
||||
x_view[:] *= x_view # modify memory without telling mx
|
||||
return x.sum()
|
||||
|
||||
x = mx.array([3.0])
|
||||
y, df = mx.value_and_grad(f)(x)
|
||||
print("f(x) = x² =", y.item()) # 9.0
|
||||
print("f'(x) = 2x !=", df.item()) # 1.0
|
||||
|
||||
|
||||
The function ``f`` indirectly modifies the array ``x`` through a memory view.
|
||||
However, this modification is not reflected in the gradient, as seen in the last line outputting ``1.0``,
|
||||
representing the gradient of the sum operation alone.
|
||||
The squaring of ``x`` occurs externally to MLX, meaning that no gradient is incorporated.
|
||||
It's important to note that a similar issue arises during array conversion and copying.
|
||||
For instance, a function defined as ``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
|
||||
even though no in-place operations on MLX memory are executed.
|
||||
|
||||
PyTorch
|
||||
-------
|
||||
|
||||
PyTorch supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import torch
|
||||
|
||||
a = mx.arange(3)
|
||||
b = torch.tensor(memoryview(a))
|
||||
c = mx.array(b.numpy())
|
||||
|
||||
Conversion from PyTorch tensors back to arrays must be done via intermediate NumPy arrays with ``numpy()``.
|
||||
|
||||
JAX
|
||||
---
|
||||
JAX fully supports the buffer protocol.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import jax.numpy as jnp
|
||||
|
||||
a = mx.arange(3)
|
||||
b = jnp.array(a)
|
||||
c = mx.array(b)
|
||||
|
||||
TensorFlow
|
||||
----------
|
||||
|
||||
TensorFlow supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import tensorflow as tf
|
||||
|
||||
a = mx.arange(3)
|
||||
b = tf.constant(memoryview(a))
|
||||
c = mx.array(b)
|
Reference in New Issue
Block a user