mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 17:31:16 +08:00
Merge branch 'distributed-layers' into socket-distributed-layers
This commit is contained in:
commit
d82699f0f1
@ -60,6 +60,12 @@ from mlx.nn.layers.convolution_transpose import (
|
||||
ConvTranspose2d,
|
||||
ConvTranspose3d,
|
||||
)
|
||||
from mlx.nn.layers.distributed import (
|
||||
AllToShardedLinear,
|
||||
QuantizedAllToShardedLinear,
|
||||
QuantizedShardedToAllLinear,
|
||||
ShardedToAllLinear,
|
||||
)
|
||||
from mlx.nn.layers.dropout import Dropout, Dropout2d, Dropout3d
|
||||
from mlx.nn.layers.embedding import Embedding
|
||||
from mlx.nn.layers.linear import Bilinear, Identity, Linear
|
||||
|
456
python/mlx/nn/layers/distributed.py
Normal file
456
python/mlx/nn/layers/distributed.py
Normal file
@ -0,0 +1,456 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import math
|
||||
from functools import lru_cache
|
||||
from typing import Optional
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.nn.layers.base import Module
|
||||
|
||||
|
||||
@lru_cache
|
||||
def sum_gradients(group):
|
||||
if group.size() == 1:
|
||||
return lambda x: x
|
||||
|
||||
@mx.custom_function
|
||||
def f(x):
|
||||
return x
|
||||
|
||||
@f.vjp
|
||||
def f(x, dx, _):
|
||||
return mx.distributed.all_sum(dx, group=group)
|
||||
|
||||
return f
|
||||
|
||||
|
||||
class AllToShardedLinear(Module):
|
||||
"""Each member of the group applies part of the affine transformation such
|
||||
that the result is sharded across the group.
|
||||
|
||||
The gradients are automatically aggregated from each member of the group.
|
||||
|
||||
Args:
|
||||
input_dims (int): The dimensionality of the input features
|
||||
output_dims (int): The dimensionality of the output features
|
||||
bias (bool, optional): If set to ``False`` the the layer will not use a
|
||||
bias. Default is ``True``.
|
||||
group (mx.distributed.Group, optional): The sharding will happen across
|
||||
this group. If not set then the global group is used. Default is
|
||||
``None``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dims: int,
|
||||
output_dims: int,
|
||||
bias: bool = True,
|
||||
group: Optional[mx.distributed.Group] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Initialize the parameters
|
||||
scale = math.sqrt(1.0 / input_dims)
|
||||
self.group = group or mx.distributed.init()
|
||||
N = self.group.size()
|
||||
|
||||
if (output_dims % N) != 0:
|
||||
raise ValueError(
|
||||
f"Cannot shard the output of size {output_dims} across {N} devices."
|
||||
)
|
||||
|
||||
self.weight = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(output_dims // N, input_dims),
|
||||
)
|
||||
if bias:
|
||||
self.bias = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(output_dims // N,),
|
||||
)
|
||||
|
||||
def _extra_repr(self) -> str:
|
||||
out_dims, in_dims = self.weight.shape
|
||||
N = self.group.size()
|
||||
out_dims *= N
|
||||
return f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}"
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
# Aggregate the gradients coming from each shard
|
||||
if self.group.size() > 1:
|
||||
x = sum_gradients(self.group)(x)
|
||||
|
||||
# Compute the affine projection
|
||||
if "bias" in self:
|
||||
x = mx.addmm(self["bias"], x, self["weight"].T)
|
||||
else:
|
||||
x = x @ self["weight"].T
|
||||
return x
|
||||
|
||||
@classmethod
|
||||
def from_linear(
|
||||
cls, linear_layer: Module, group: Optional[mx.distributed.Group] = None
|
||||
):
|
||||
group = group or mx.distributed.init()
|
||||
N = group.size()
|
||||
r = group.rank()
|
||||
output_dims, input_dims = linear_layer.weight.shape
|
||||
step = output_dims // N
|
||||
|
||||
sl = cls(input_dims, output_dims, False, group)
|
||||
# The multiplication with 1.0 forces a copy, perhaps change to
|
||||
# something better when available.
|
||||
sl.weight = linear_layer.weight[r * step : (r + 1) * step] * 1
|
||||
if "bias" in linear_layer:
|
||||
sl.bias = linear_layer.bias[r * step : (r + 1) * step] * 1
|
||||
|
||||
return sl
|
||||
|
||||
|
||||
class ShardedToAllLinear(Module):
|
||||
"""Each member of the group applies part of the affine transformation and
|
||||
then aggregates the results.
|
||||
|
||||
All nodes will have the same exact result after this layer.
|
||||
|
||||
:class:`ShardedToAllLinear` provides a classmethod :meth:`from_linear` to
|
||||
convert linear layers to sharded :obj:`ShardedToAllLinear` layers.
|
||||
|
||||
Args:
|
||||
input_dims (int): The dimensionality of the input features
|
||||
output_dims (int): The dimensionality of the output features
|
||||
bias (bool, optional): If set to ``False`` the the layer will not use a
|
||||
bias. Default is ``True``.
|
||||
group (mx.distributed.Group, optional): The sharding will happen across
|
||||
this group. If not set then the global group is used. Default is
|
||||
``None``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dims: int,
|
||||
output_dims: int,
|
||||
bias: bool = True,
|
||||
group: Optional[mx.distributed.Group] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Initialize the parameters
|
||||
scale = math.sqrt(1.0 / input_dims)
|
||||
self.group = group or mx.distributed.init()
|
||||
N = self.group.size()
|
||||
|
||||
if (input_dims % N) != 0:
|
||||
raise ValueError(
|
||||
f"The input of size {input_dims} cannot be sharded across {N} devices."
|
||||
)
|
||||
|
||||
self.weight = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(output_dims, input_dims // N),
|
||||
)
|
||||
if bias:
|
||||
self.bias = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(output_dims,),
|
||||
)
|
||||
|
||||
def _extra_repr(self) -> str:
|
||||
N = self.group.size()
|
||||
out_dims, in_dims = self.weight.shape
|
||||
in_dims *= N
|
||||
return f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}"
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
if self.group.size() > 1:
|
||||
# Perform the local projection and aggregate the results
|
||||
x = x @ self["weight"].T
|
||||
x = mx.distributed.all_sum(x, group=self.group)
|
||||
|
||||
# Add the bias if we have one
|
||||
if "bias" in self:
|
||||
x = x + self["bias"]
|
||||
else:
|
||||
# Normal linear layer as we are not in a distributed setting.
|
||||
if "bias" in self:
|
||||
x = mx.addmm(self["bias"], x, self["weight"].T)
|
||||
else:
|
||||
x = x @ self["weight"].T
|
||||
return x
|
||||
|
||||
@classmethod
|
||||
def from_linear(
|
||||
cls, linear_layer: Module, group: Optional[mx.distributed.Group] = None
|
||||
):
|
||||
group = group or mx.distributed.init()
|
||||
N = group.size()
|
||||
r = group.rank()
|
||||
output_dims, input_dims = linear_layer.weight.shape
|
||||
step = input_dims // N
|
||||
|
||||
sl = cls(input_dims, output_dims, False, group)
|
||||
# The multiplication with 1.0 forces a copy, perhaps change to
|
||||
# something better when available.
|
||||
sl.weight = linear_layer.weight[:, r * step : (r + 1) * step] * 1
|
||||
if "bias" in linear_layer:
|
||||
sl.bias = linear_layer.bias
|
||||
|
||||
return sl
|
||||
|
||||
|
||||
class QuantizedAllToShardedLinear(Module):
|
||||
"""Each member of the group applies part of the affine transformation with
|
||||
a quantized matrix such that the result is sharded across the group.
|
||||
|
||||
It is the quantized equivalent of :class:`mlx.nn.AllToShardedLinear`.
|
||||
Similar to :class:`mlx.nn.QuantizedLinear` its parameters are frozen and
|
||||
will not be included in any gradient computation.
|
||||
|
||||
Args:
|
||||
input_dims (int): The dimensionality of the input features.
|
||||
output_dims (int): The dimensionality of the output features.
|
||||
bias (bool, optional): If set to ``False`` then the layer will not use
|
||||
a bias. Default: ``True``.
|
||||
group_size (int, optional): The group size to use for the quantized
|
||||
weight. See :func:`~mlx.core.quantize`. Default: ``64``.
|
||||
bits (int, optional): The bit width to use for the quantized weight.
|
||||
See :func:`~mlx.core.quantize`. Default: ``4``.
|
||||
group (mx.distributed.Group, optional): The sharding will happen across
|
||||
this group. If not set then the global group is used. Default is
|
||||
``None``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dims: int,
|
||||
output_dims: int,
|
||||
bias: bool = True,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
group: Optional[mx.distributed.Group] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Quantization config
|
||||
self.group_size = group_size
|
||||
self.bits = bits
|
||||
|
||||
# Initialize the quantized weight
|
||||
scale = math.sqrt(1.0 / input_dims)
|
||||
self.group = group or mx.distributed.init()
|
||||
N = self.group.size()
|
||||
|
||||
if (output_dims % N) != 0:
|
||||
raise ValueError(
|
||||
f"Cannot shard the output of size {output_dims} across {N} devices."
|
||||
)
|
||||
|
||||
weight = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(output_dims // N, input_dims),
|
||||
)
|
||||
self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits)
|
||||
|
||||
# And bias if needed
|
||||
if bias:
|
||||
self.bias = mx.zeros((output_dims // N,))
|
||||
|
||||
# Freeze this model's parameters
|
||||
self.freeze()
|
||||
|
||||
def unfreeze(self, *args, **kwargs):
|
||||
"""Wrap unfreeze so that we unfreeze any layers we might contain but
|
||||
our parameters will remain frozen."""
|
||||
super().unfreeze(*args, **kwargs)
|
||||
self.freeze(recurse=False)
|
||||
|
||||
def _extra_repr(self) -> str:
|
||||
out_dims, in_dims = self.weight.shape
|
||||
in_dims *= 32 // self.bits
|
||||
out_dims *= self.group.size()
|
||||
return (
|
||||
f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}, "
|
||||
f"group_size={self.group_size}, bits={self.bits}"
|
||||
)
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
# Aggregate the gradients coming from each shard
|
||||
if self.group.size() > 1:
|
||||
x = sum_gradients(self.group)(x)
|
||||
|
||||
x = mx.quantized_matmul(
|
||||
x,
|
||||
self["weight"],
|
||||
scales=self["scales"],
|
||||
biases=self["biases"],
|
||||
transpose=True,
|
||||
group_size=self.group_size,
|
||||
bits=self.bits,
|
||||
)
|
||||
if "bias" in self:
|
||||
x = x + self["bias"]
|
||||
return x
|
||||
|
||||
@classmethod
|
||||
def from_quantized_linear(
|
||||
cls,
|
||||
quantized_linear_layer: Module,
|
||||
group: Optional[mx.distributed.Group] = None,
|
||||
):
|
||||
group = group or mx.distributed.init()
|
||||
N = group.size()
|
||||
r = group.rank()
|
||||
output_dims, input_dims = quantized_linear_layer.weight.shape
|
||||
input_dims *= 32 // quantized_linear_layer.bits
|
||||
step = output_dims // N
|
||||
|
||||
sl = cls(
|
||||
input_dims,
|
||||
output_dims,
|
||||
False,
|
||||
group_size=quantized_linear_layer.group_size,
|
||||
bits=quantized_linear_layer.bits,
|
||||
group=group,
|
||||
)
|
||||
sl.weight = quantized_linear_layer.weight[r * step : (r + 1) * step] * 1
|
||||
sl.scales = quantized_linear_layer.scales[r * step : (r + 1) * step] * 1
|
||||
sl.biases = quantized_linear_layer.biases[r * step : (r + 1) * step] * 1
|
||||
if "bias" in quantized_linear_layer:
|
||||
sl.bias = quantized_linear_layer.bias[r * step : (r + 1) * step] * 1
|
||||
|
||||
return sl
|
||||
|
||||
|
||||
class QuantizedShardedToAllLinear(Module):
|
||||
"""Each member of the group applies part of the affine transformation using
|
||||
the quantized matrix and then aggregates the results.
|
||||
|
||||
All nodes will have the same exact result after this layer.
|
||||
|
||||
It is the quantized equivalent of :class:`mlx.nn.ShardedToAllLinear`.
|
||||
Similar to :class:`mlx.nn.QuantizedLinear` its parameters are frozen and
|
||||
will not be included in any gradient computation.
|
||||
|
||||
Args:
|
||||
input_dims (int): The dimensionality of the input features.
|
||||
output_dims (int): The dimensionality of the output features.
|
||||
bias (bool, optional): If set to ``False`` then the layer will not use
|
||||
a bias. Default: ``True``.
|
||||
group_size (int, optional): The group size to use for the quantized
|
||||
weight. See :func:`~mlx.core.quantize`. Default: ``64``.
|
||||
bits (int, optional): The bit width to use for the quantized weight.
|
||||
See :func:`~mlx.core.quantize`. Default: ``4``.
|
||||
group (mx.distributed.Group, optional): The sharding will happen across
|
||||
this group. If not set then the global group is used. Default is
|
||||
``None``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dims: int,
|
||||
output_dims: int,
|
||||
bias: bool = True,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
group: Optional[mx.distributed.Group] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Quantization config
|
||||
self.group_size = group_size
|
||||
self.bits = bits
|
||||
|
||||
# Initialize the quantized weight
|
||||
scale = math.sqrt(1.0 / input_dims)
|
||||
self.group = group or mx.distributed.init()
|
||||
N = self.group.size()
|
||||
|
||||
if (input_dims % N) != 0:
|
||||
raise ValueError(
|
||||
f"The input of size {input_dims} cannot be sharded across {N} devices."
|
||||
)
|
||||
|
||||
weight = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(output_dims, input_dims // N),
|
||||
)
|
||||
self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits)
|
||||
|
||||
# And bias if needed
|
||||
if bias:
|
||||
self.bias = mx.zeros((output_dims,))
|
||||
|
||||
# Freeze this model's parameters
|
||||
self.freeze()
|
||||
|
||||
def unfreeze(self, *args, **kwargs):
|
||||
"""Wrap unfreeze so that we unfreeze any layers we might contain but
|
||||
our parameters will remain frozen."""
|
||||
super().unfreeze(*args, **kwargs)
|
||||
self.freeze(recurse=False)
|
||||
|
||||
def _extra_repr(self) -> str:
|
||||
out_dims, in_dims = self.weight.shape
|
||||
in_dims *= (32 // self.bits) * self.group.size()
|
||||
return (
|
||||
f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}, "
|
||||
f"group_size={self.group_size}, bits={self.bits}"
|
||||
)
|
||||
|
||||
def __call__(self, x: mx.array) -> mx.array:
|
||||
x = mx.quantized_matmul(
|
||||
x,
|
||||
self["weight"],
|
||||
scales=self["scales"],
|
||||
biases=self["biases"],
|
||||
transpose=True,
|
||||
group_size=self.group_size,
|
||||
bits=self.bits,
|
||||
)
|
||||
if self.group.size() > 1:
|
||||
x = mx.distributed.all_sum(x, group=self.group)
|
||||
if "bias" in self:
|
||||
x = x + self["bias"]
|
||||
return x
|
||||
|
||||
@classmethod
|
||||
def from_quantized_linear(
|
||||
cls,
|
||||
quantized_linear_layer: Module,
|
||||
group: Optional[mx.distributed.Group] = None,
|
||||
):
|
||||
group = group or mx.distributed.init()
|
||||
N = group.size()
|
||||
r = group.rank()
|
||||
output_dims, input_dims = quantized_linear_layer.weight.shape
|
||||
step = input_dims // N
|
||||
step_grouped = quantized_linear_layer.scales.shape[1] // N
|
||||
input_dims *= (32 // quantized_linear_layer.bits) * N
|
||||
|
||||
sl = cls(
|
||||
input_dims,
|
||||
output_dims,
|
||||
False,
|
||||
group_size=quantized_linear_layer.group_size,
|
||||
bits=quantized_linear_layer.bits,
|
||||
group=group,
|
||||
)
|
||||
sl.weight = quantized_linear_layer.weight[:, r * step : (r + 1) * step] * 1
|
||||
sl.scales = (
|
||||
quantized_linear_layer.scales[:, r * step_grouped : (r + 1) * step_grouped]
|
||||
* 1
|
||||
)
|
||||
sl.biases = (
|
||||
quantized_linear_layer.biases[:, r * step_grouped : (r + 1) * step_grouped]
|
||||
* 1
|
||||
)
|
||||
if "bias" in quantized_linear_layer:
|
||||
sl.bias = quantized_linear_layer.bias
|
||||
|
||||
return sl
|
Loading…
Reference in New Issue
Block a user