mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-18 18:28:12 +08:00
rebase
This commit is contained in:
26
docs/build/html/_sources/dev/extensions.rst
vendored
26
docs/build/html/_sources/dev/extensions.rst
vendored
@@ -420,8 +420,8 @@ element in the output.
|
||||
constant const float& alpha [[buffer(3)]],
|
||||
constant const float& beta [[buffer(4)]],
|
||||
constant const int* shape [[buffer(5)]],
|
||||
constant const size_t* x_strides [[buffer(6)]],
|
||||
constant const size_t* y_strides [[buffer(7)]],
|
||||
constant const int64_t* x_strides [[buffer(6)]],
|
||||
constant const int64_t* y_strides [[buffer(7)]],
|
||||
constant const int& ndim [[buffer(8)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
// Convert linear indices to offsets in array
|
||||
@@ -438,24 +438,10 @@ each instantiation a unique host name so we can identify it.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
template [[host_name("axpby_general_" #type_name)]] \
|
||||
[[kernel]] void axpby_general<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
constant const int* shape [[buffer(5)]], \
|
||||
constant const size_t* x_strides [[buffer(6)]], \
|
||||
constant const size_t* y_strides [[buffer(7)]], \
|
||||
constant const int& ndim [[buffer(8)]], \
|
||||
uint index [[thread_position_in_grid]]);
|
||||
|
||||
instantiate_axpby(float32, float);
|
||||
instantiate_axpby(float16, half);
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
instantiate_kernel("axpby_general_float32", axpby_general, float)
|
||||
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
|
||||
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
|
||||
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)
|
||||
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
||||
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
|
121
docs/build/html/_sources/dev/mlx_in_cpp.rst
vendored
Normal file
121
docs/build/html/_sources/dev/mlx_in_cpp.rst
vendored
Normal file
@@ -0,0 +1,121 @@
|
||||
.. _mlx_in_cpp:
|
||||
|
||||
Using MLX in C++
|
||||
================
|
||||
|
||||
You can use MLX in a C++ project with CMake.
|
||||
|
||||
.. note::
|
||||
|
||||
This guide is based one the following `example using MLX in C++
|
||||
<https://github.com/ml-explore/mlx/tree/main/examples/cmake_project>`_
|
||||
|
||||
First install MLX:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U mlx
|
||||
|
||||
You can also install the MLX Python package from source or just the C++
|
||||
library. For more information see the :ref:`documentation on installing MLX
|
||||
<build_and_install>`.
|
||||
|
||||
Next make an example program in ``example.cpp``:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/mlx.h"
|
||||
|
||||
namespace mx = mlx::core;
|
||||
|
||||
int main() {
|
||||
auto x = mx::array({1, 2, 3});
|
||||
auto y = mx::array({1, 2, 3});
|
||||
std::cout << x + y << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
The next step is to setup a CMake file in ``CMakeLists.txt``:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
cmake_minimum_required(VERSION 3.27)
|
||||
|
||||
project(example LANGUAGES CXX)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
|
||||
|
||||
Depending on how you installed MLX, you may need to tell CMake where to
|
||||
find it.
|
||||
|
||||
If you installed MLX with Python, then add the following to the CMake file:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
find_package(
|
||||
Python 3.9
|
||||
COMPONENTS Interpreter Development.Module
|
||||
REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
OUTPUT_VARIABLE MLX_ROOT)
|
||||
|
||||
If you installed the MLX C++ package to a system path, then CMake should be
|
||||
able to find it. If you installed it to a non-standard location or CMake can't
|
||||
find MLX then set ``MLX_ROOT`` to the location where MLX is installed:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
set(MLX_ROOT "/path/to/mlx/")
|
||||
|
||||
Next, instruct CMake to find MLX:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
|
||||
Finally, add the ``example.cpp`` program as an executable and link MLX.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
add_executable(example example.cpp)
|
||||
target_link_libraries(example PRIVATE mlx)
|
||||
|
||||
You can build the example with:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build
|
||||
|
||||
And run it with:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
./build/example
|
||||
|
||||
Note ``find_package(MLX CONFIG REQUIRED)`` sets the following variables:
|
||||
|
||||
.. list-table:: Package Variables
|
||||
:widths: 20 20
|
||||
:header-rows: 1
|
||||
|
||||
* - Variable
|
||||
- Description
|
||||
* - MLX_FOUND
|
||||
- ``True`` if MLX is found
|
||||
* - MLX_INCLUDE_DIRS
|
||||
- Include directory
|
||||
* - MLX_LIBRARIES
|
||||
- Libraries to link against
|
||||
* - MLX_CXX_FLAGS
|
||||
- Additional compiler flags
|
||||
* - MLX_BUILD_ACCELERATE
|
||||
- ``True`` if MLX was built with Accelerate
|
||||
* - MLX_BUILD_METAL
|
||||
- ``True`` if MLX was built with Metal
|
3
docs/build/html/_sources/index.rst
vendored
3
docs/build/html/_sources/index.rst
vendored
@@ -45,6 +45,7 @@ are the CPU and GPU.
|
||||
usage/numpy
|
||||
usage/distributed
|
||||
usage/using_streams
|
||||
usage/export
|
||||
|
||||
.. toctree::
|
||||
:caption: Examples
|
||||
@@ -61,6 +62,7 @@ are the CPU and GPU.
|
||||
python/array
|
||||
python/data_types
|
||||
python/devices_and_streams
|
||||
python/export
|
||||
python/ops
|
||||
python/random
|
||||
python/transforms
|
||||
@@ -86,3 +88,4 @@ are the CPU and GPU.
|
||||
dev/extensions
|
||||
dev/metal_debugger
|
||||
dev/custom_metal_kernels
|
||||
dev/mlx_in_cpp
|
||||
|
4
docs/build/html/_sources/install.rst
vendored
4
docs/build/html/_sources/install.rst
vendored
@@ -1,3 +1,5 @@
|
||||
.. _build_and_install:
|
||||
|
||||
Build and Install
|
||||
=================
|
||||
|
||||
@@ -53,7 +55,7 @@ Build Requirements
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
- A C++ compiler with C++17 support (e.g. Clang >= 5.0)
|
||||
- `cmake <https://cmake.org/>`_ -- version 3.24 or later, and ``make``
|
||||
- `cmake <https://cmake.org/>`_ -- version 3.25 or later, and ``make``
|
||||
- Xcode >= 15.0 and macOS SDK >= 14.0
|
||||
|
||||
.. note::
|
||||
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.export_function.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.export_function.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.export\_function
|
||||
=========================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: export_function
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.export_to_dot.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.export_to_dot.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.export\_to\_dot
|
||||
========================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: export_to_dot
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.exporter.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.exporter.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.exporter
|
||||
=================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: exporter
|
30
docs/build/html/_sources/python/_autosummary/mlx.core.finfo.rst
vendored
Normal file
30
docs/build/html/_sources/python/_autosummary/mlx.core.finfo.rst
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
mlx.core.finfo
|
||||
==============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autoclass:: finfo
|
||||
|
||||
|
||||
.. automethod:: __init__
|
||||
|
||||
|
||||
.. rubric:: Methods
|
||||
|
||||
.. autosummary::
|
||||
|
||||
~finfo.__init__
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
.. rubric:: Attributes
|
||||
|
||||
.. autosummary::
|
||||
|
||||
~finfo.dtype
|
||||
~finfo.max
|
||||
~finfo.min
|
||||
|
||||
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.import_function.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.import_function.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.import\_function
|
||||
=========================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: import_function
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.kron.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.kron.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.kron
|
||||
=============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: kron
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.slice.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.slice.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.slice
|
||||
==============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: slice
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.slice_update.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.slice_update.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.slice\_update
|
||||
======================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: slice_update
|
6
docs/build/html/_sources/python/_autosummary/mlx.core.unflatten.rst
vendored
Normal file
6
docs/build/html/_sources/python/_autosummary/mlx.core.unflatten.rst
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
mlx.core.unflatten
|
||||
==================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autofunction:: unflatten
|
@@ -66,3 +66,4 @@ documentation for more information. Use :func:`issubdtype` to determine if one
|
||||
Dtype
|
||||
DtypeCategory
|
||||
issubdtype
|
||||
finfo
|
||||
|
14
docs/build/html/_sources/python/export.rst
vendored
Normal file
14
docs/build/html/_sources/python/export.rst
vendored
Normal file
@@ -0,0 +1,14 @@
|
||||
.. _export:
|
||||
|
||||
Export Functions
|
||||
================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
export_function
|
||||
import_function
|
||||
exporter
|
||||
export_to_dot
|
4
docs/build/html/_sources/python/ops.rst
vendored
4
docs/build/html/_sources/python/ops.rst
vendored
@@ -89,6 +89,7 @@ Operations
|
||||
isneginf
|
||||
isposinf
|
||||
issubdtype
|
||||
kron
|
||||
left_shift
|
||||
less
|
||||
less_equal
|
||||
@@ -144,6 +145,8 @@ Operations
|
||||
sign
|
||||
sin
|
||||
sinh
|
||||
slice
|
||||
slice_update
|
||||
softmax
|
||||
sort
|
||||
split
|
||||
@@ -168,6 +171,7 @@ Operations
|
||||
tri
|
||||
tril
|
||||
triu
|
||||
unflatten
|
||||
var
|
||||
view
|
||||
where
|
||||
|
74
docs/build/html/_sources/usage/compile.rst
vendored
74
docs/build/html/_sources/usage/compile.rst
vendored
@@ -421,3 +421,77 @@ the most opportunity to optimize the computation graph:
|
||||
# Compiling the outer function is good to do as it will likely
|
||||
# be faster even though the inner functions are compiled
|
||||
fun = mx.compile(outer)
|
||||
|
||||
|
||||
|
||||
.. _shapeless_compile:
|
||||
|
||||
Shapeless Compilation
|
||||
---------------------
|
||||
|
||||
When the shape of an input to a compiled function changes, the function is
|
||||
recompiled. You can compile a function once and run it on inputs with
|
||||
variable shapes by specifying ``shapeless=True`` to :func:`compile`. In this
|
||||
case changes to the shapes of the inputs do not cause the function to be
|
||||
recompiled.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
return mx.abs(x + y)
|
||||
|
||||
compiled_fun = mx.compile(fun, shapeless=True)
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(-2.0)
|
||||
|
||||
# Firt call compiles the function
|
||||
print(compiled_fun(x, y))
|
||||
|
||||
# Second call with different shapes
|
||||
# does not recompile the function
|
||||
x = mx.array([1.0, -6.0])
|
||||
y = mx.array([-2.0, 3.0])
|
||||
print(compiled_fun(x, y))
|
||||
|
||||
|
||||
Use shapeless compilations carefully. Since compilation is not triggered when
|
||||
shapes change, any graphs which are conditional on the input shapes will not
|
||||
work as expected. Shape-dependent computations are common and sometimes subtle
|
||||
to detect. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x):
|
||||
return x.reshape(x.shape[0] * x.shape[1], -1)
|
||||
|
||||
compiled_fun = mx.compile(fun, shapeless=True)
|
||||
|
||||
x = mx.random.uniform(shape=(2, 3, 4))
|
||||
|
||||
out = compiled_fun(x)
|
||||
|
||||
x = mx.random.uniform(shape=(5, 5, 3))
|
||||
|
||||
# Error, can't reshape (5, 5, 3) to (6, -1)
|
||||
out = compiled_fun(x)
|
||||
|
||||
The second call to the ``compiled_fun`` fails because of the call to
|
||||
:func:`reshape` which uses the static shape of ``x`` in the first call. We can
|
||||
fix this by using :func:`flatten` to avoid hardcoding the shape of ``x``:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x):
|
||||
return x.flatten(0, 1)
|
||||
|
||||
compiled_fun = mx.compile(fun, shapeless=True)
|
||||
|
||||
x = mx.random.uniform(shape=(2, 3, 4))
|
||||
|
||||
out = compiled_fun(x)
|
||||
|
||||
x = mx.random.uniform(shape=(5, 5, 3))
|
||||
|
||||
# Ok
|
||||
out = compiled_fun(x)
|
||||
|
@@ -141,12 +141,13 @@ everything else remaining the same.
|
||||
from mlx.utils import tree_map
|
||||
|
||||
def all_reduce_grads(grads):
|
||||
N = mx.distributed.init()
|
||||
N = mx.distributed.init().size()
|
||||
if N == 1:
|
||||
return grads
|
||||
return tree_map(
|
||||
lambda x: mx.distributed.all_sum(x) / N,
|
||||
grads)
|
||||
lambda x: mx.distributed.all_sum(x) / N,
|
||||
grads
|
||||
)
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
|
288
docs/build/html/_sources/usage/export.rst
vendored
Normal file
288
docs/build/html/_sources/usage/export.rst
vendored
Normal file
@@ -0,0 +1,288 @@
|
||||
.. _export_usage:
|
||||
|
||||
Exporting Functions
|
||||
===================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
MLX has an API to export and import functions to and from a file. This lets you
|
||||
run computations written in one MLX front-end (e.g. Python) in another MLX
|
||||
front-end (e.g. C++).
|
||||
|
||||
This guide walks through the basics of the MLX export API with some examples.
|
||||
To see the full list of functions check-out the :ref:`API documentation
|
||||
<export>`.
|
||||
|
||||
Basics of Exporting
|
||||
-------------------
|
||||
|
||||
Let's start with a simple example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
return x + y
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(1.0)
|
||||
mx.export_function("add.mlxfn", fun, x, y)
|
||||
|
||||
To export a function, provide sample input arrays that the function
|
||||
can be called with. The data doesn't matter, but the shapes and types of the
|
||||
arrays do. In the above example we exported ``fun`` with two ``float32``
|
||||
scalar arrays. We can then import the function and run it:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
add_fun = mx.import_function("add.mlxfn")
|
||||
|
||||
out, = add_fun(mx.array(1.0), mx.array(2.0))
|
||||
# Prints: array(3, dtype=float32)
|
||||
print(out)
|
||||
|
||||
out, = add_fun(mx.array(1.0), mx.array(3.0))
|
||||
# Prints: array(4, dtype=float32)
|
||||
print(out)
|
||||
|
||||
# Raises an exception
|
||||
add_fun(mx.array(1), mx.array(3.0))
|
||||
|
||||
# Raises an exception
|
||||
add_fun(mx.array([1.0, 2.0]), mx.array(3.0))
|
||||
|
||||
Notice the third and fourth calls to ``add_fun`` raise exceptions because the
|
||||
shapes and types of the inputs are different than the shapes and types of the
|
||||
example inputs we exported the function with.
|
||||
|
||||
Also notice that even though the original ``fun`` returns a single output
|
||||
array, the imported function always returns a tuple of one or more arrays.
|
||||
|
||||
The inputs to :func:`export_function` and to an imported function can be
|
||||
specified as variable positional arguments or as a tuple of arrays:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
return x + y
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(1.0)
|
||||
|
||||
# Both arguments to fun are positional
|
||||
mx.export_function("add.mlxfn", fun, x, y)
|
||||
|
||||
# Same as above
|
||||
mx.export_function("add.mlxfn", fun, (x, y))
|
||||
|
||||
imported_fun = mx.import_function("add.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_fun(x, y)
|
||||
|
||||
# Also ok
|
||||
out, = imported_fun((x, y))
|
||||
|
||||
You can pass example inputs to functions as positional or keyword arguments. If
|
||||
you use keyword arguments to export the function, then you have to use the same
|
||||
keyword arguments when calling the imported function.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
return x + y
|
||||
|
||||
# One argument to fun is positional, the other is a kwarg
|
||||
mx.export_function("add.mlxfn", fun, x, y=y)
|
||||
|
||||
imported_fun = mx.import_function("add.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_fun(x, y=y)
|
||||
|
||||
# Also ok
|
||||
out, = imported_fun((x,), {"y": y})
|
||||
|
||||
# Raises since the keyword argument is missing
|
||||
out, = imported_fun(x, y)
|
||||
|
||||
# Raises since the keyword argument has the wrong key
|
||||
out, = imported_fun(x, z=y)
|
||||
|
||||
|
||||
Exporting Modules
|
||||
-----------------
|
||||
|
||||
An :obj:`mlx.nn.Module` can be exported with or without the parameters included
|
||||
in the exported function. Here's an example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = nn.Linear(4, 4)
|
||||
mx.eval(model.parameters())
|
||||
|
||||
def call(x):
|
||||
return model(x)
|
||||
|
||||
mx.export_function("model.mlxfn", call, mx.zeros(4))
|
||||
|
||||
In the above example, the :obj:`mlx.nn.Linear` module is exported. Its
|
||||
parameters are also saved to the ``model.mlxfn`` file.
|
||||
|
||||
.. note::
|
||||
|
||||
For enclosed arrays inside an exported function, be extra careful to ensure
|
||||
they are evaluated. The computation graph that gets exported will include
|
||||
the computation that produces enclosed inputs.
|
||||
|
||||
If the above example was missing ``mx.eval(model.parameters()``, the
|
||||
exported function would include the random initialization of the
|
||||
:obj:`mlx.nn.Module` parameters.
|
||||
|
||||
If you only want to export the ``Module.__call__`` function without the
|
||||
parameters, pass them as inputs to the ``call`` wrapper:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = nn.Linear(4, 4)
|
||||
mx.eval(model.parameters())
|
||||
|
||||
def call(x, **params):
|
||||
# Set the model's parameters to the input parameters
|
||||
model.update(tree_unflatten(list(params.items())))
|
||||
return model(x)
|
||||
|
||||
params = dict(tree_flatten(model.parameters()))
|
||||
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
|
||||
|
||||
|
||||
Shapeless Exports
|
||||
-----------------
|
||||
|
||||
Just like :func:`compile`, functions can also be exported for dynamically shaped
|
||||
inputs. Pass ``shapeless=True`` to :func:`export_function` or :func:`exporter`
|
||||
to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
|
||||
imported_abs = mx.import_function("fun.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
With ``shapeless=False`` (which is the default), the second call to
|
||||
``imported_abs`` would raise an exception with a shape mismatch.
|
||||
|
||||
Shapeless exporting works the same as shapeless compilation and should be
|
||||
used carefully. See the :ref:`documentation on shapeless compilation
|
||||
<shapeless_compile>` for more information.
|
||||
|
||||
Exporting Multiple Traces
|
||||
-------------------------
|
||||
|
||||
In some cases, functions build different computation graphs for different
|
||||
input arguments. A simple way to manage this is to export to a new file with
|
||||
each set of inputs. This is a fine option in many cases. But it can be
|
||||
suboptimal if the exported functions have a large amount of duplicate constant
|
||||
data (for example the parameters of a :obj:`mlx.nn.Module`).
|
||||
|
||||
The export API in MLX lets you export multiple traces of the same function to
|
||||
a single file by creating an exporting context manager with :func:`exporter`:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y=None):
|
||||
constant = mx.array(3.0)
|
||||
if y is not None:
|
||||
x += y
|
||||
return x + constant
|
||||
|
||||
with mx.exporter("fun.mlxfn", fun) as exporter:
|
||||
exporter(mx.array(1.0))
|
||||
exporter(mx.array(1.0), y=mx.array(0.0))
|
||||
|
||||
imported_function = mx.import_function("fun.mlxfn")
|
||||
|
||||
# Call the function with y=None
|
||||
out, = imported_function(mx.array(1.0))
|
||||
print(out)
|
||||
|
||||
# Call the function with y specified
|
||||
out, = imported_function(mx.array(1.0), y=mx.array(1.0))
|
||||
print(out)
|
||||
|
||||
In the above example the function constant data, (i.e. ``constant``), is only
|
||||
saved once.
|
||||
|
||||
Transformations with Imported Functions
|
||||
---------------------------------------
|
||||
|
||||
Function transformations like :func:`grad`, :func:`vmap`, and :func:`compile` work
|
||||
on imported functions just like regular Python functions:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x):
|
||||
return mx.sin(x)
|
||||
|
||||
x = mx.array(0.0)
|
||||
mx.export_function("sine.mlxfn", fun, x)
|
||||
|
||||
imported_fun = mx.import_function("sine.mlxfn")
|
||||
|
||||
# Take the derivative of the imported function
|
||||
dfdx = mx.grad(lambda x: imported_fun(x)[0])
|
||||
# Prints: array(1, dtype=float32)
|
||||
print(dfdx(x))
|
||||
|
||||
# Compile the imported function
|
||||
mx.compile(imported_fun)
|
||||
# Prints: array(0, dtype=float32)
|
||||
print(compiled_fun(x)[0])
|
||||
|
||||
|
||||
Importing Functions in C++
|
||||
--------------------------
|
||||
|
||||
Importing and running functions in C++ is basically the same as importing and
|
||||
running them in Python. First, follow the :ref:`instructions <mlx_in_cpp>` to
|
||||
setup a simple C++ project that uses MLX as a library.
|
||||
|
||||
Next, export a simple function from Python:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
return mx.exp(x + y)
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(1.0)
|
||||
mx.export_function("fun.mlxfn", fun, x, y)
|
||||
|
||||
|
||||
Import and run the function in C++ with only a few lines of code:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
auto fun = mx::import_function("fun.mlxfn");
|
||||
|
||||
auto inputs = {mx::array(1.0), mx::array(1.0)};
|
||||
auto outputs = fun(inputs);
|
||||
|
||||
// Prints: array(2, dtype=float32)
|
||||
std::cout << outputs[0] << std::endl;
|
||||
|
||||
Imported functions can be transformed in C++ just like in Python. Use
|
||||
``std::vector<mx::array>`` for positional arguments and ``std::map<std::string,
|
||||
mx::array>`` for keyword arguments when calling imported functions in C++.
|
||||
|
||||
More Examples
|
||||
-------------
|
||||
|
||||
Here are a few more complete examples exporting more complex functions from
|
||||
Python and importing and running them in C++:
|
||||
|
||||
* `Inference and training a multi-layer perceptron <https://github.com/ml-explore/mlx/tree/main/examples/export>`_
|
Reference in New Issue
Block a user