docs update

This commit is contained in:
Awni Hannun
2024-08-10 09:24:35 -07:00
committed by CircleCI Docs
parent 8f68182d95
commit d8f7b8cda6
724 changed files with 14529 additions and 11046 deletions

View File

@@ -486,9 +486,8 @@ below.
std::ostringstream kname;
kname << "axpby_" << "general_" << type_to_name(out);
// Make sure the metal library is available and look for it
// in the same folder as this executable if needed
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
// Make sure the metal library is available
d.register_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname.str(), "mlx_ext");

View File

@@ -15,7 +15,7 @@ module to concisely define the model architecture.
Attention layer
^^^^^^^^^^^^^^^^
We will start with the llama attention layer which notably uses the RoPE
We will start with the Llama attention layer which notably uses the RoPE
positional encoding. [1]_ In addition, our attention layer will optionally use a
key/value cache that will be concatenated with the provided keys and values to
support efficient inference.

View File

@@ -64,7 +64,7 @@ set:
Next, setup the problem parameters and load the data. To load the data, you need our
`mnist data loader
<https://github.com/ml-explore/mlx-examples/blob/main/mnist/mnist.py>`_, which
we will import as `mnist`.
we will import as ``mnist``.
.. code-block:: python

View File

@@ -70,36 +70,36 @@ To build and install the MLX python library from source, first, clone MLX from
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
Install `nanobind <https://nanobind.readthedocs.io/en/latest/>`_ with:
.. code-block:: shell
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
Then simply build and install MLX using pip:
.. code-block:: shell
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install .
CMAKE_BUILD_PARALLEL_LEVEL="" pip install .
For developing use an editable install:
For developing, install the package with development dependencies, and use an
editable install:
.. code-block:: shell
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e .
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e ".[dev]"
To make sure the install is working run the tests with:
Once the development dependencies are installed, you can build faster with:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py build_ext -j --inplace
Run the tests with:
.. code-block:: shell
pip install ".[testing]"
python -m unittest discover python/tests
Optional: Install stubs to enable auto completions and type checking from your IDE:
Optional: Install stubs to enable auto completions and type checking from your
IDE:
.. code-block:: shell
pip install ".[dev]"
python setup.py generate_stubs
C++ API

View File

@@ -9,14 +9,21 @@
.. automethod:: __init__
.. rubric:: Methods
.. rubric:: Attributes
.. autosummary::
~DtypeCategory.__init__
~DtypeCategory.complexfloating
~DtypeCategory.floating
~DtypeCategory.inexact
~DtypeCategory.signedinteger
~DtypeCategory.unsignedinteger
~DtypeCategory.integer
~DtypeCategory.number
~DtypeCategory.generic

View File

@@ -0,0 +1,6 @@
mlx.core.linalg.cholesky\_inv
=============================
.. currentmodule:: mlx.core.linalg
.. autofunction:: cholesky_inv

View File

@@ -0,0 +1,6 @@
mlx.core.linalg.tri\_inv
========================
.. currentmodule:: mlx.core.linalg
.. autofunction:: tri_inv

View File

@@ -9,7 +9,9 @@ Linear Algebra
:toctree: _autosummary
inv
tri_inv
norm
cholesky
cholesky_inv
qr
svd