docs update

This commit is contained in:
Awni Hannun
2024-08-10 09:24:35 -07:00
committed by CircleCI Docs
parent 8f68182d95
commit d8f7b8cda6
724 changed files with 14529 additions and 11046 deletions

View File

@@ -8,7 +8,7 @@
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<title>Linear Regression &#8212; MLX 0.16.1 documentation</title>
<title>Linear Regression &#8212; MLX 0.16.2 documentation</title>
@@ -36,7 +36,7 @@
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=5b4479735964841361fd" />
<script src="../_static/vendor/fontawesome/6.1.2/js/all.min.js?digest=5b4479735964841361fd"></script>
<script src="../_static/documentation_options.js?v=179565df"></script>
<script src="../_static/documentation_options.js?v=00e1e5b9"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/scripts/sphinx-book-theme.js?v=efea14e4"></script>
@@ -131,8 +131,8 @@
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.16.1 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.16.1 documentation - Home"/>`);</script>
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.16.2 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.16.2 documentation - Home"/>`);</script>
</a></div>
@@ -457,8 +457,10 @@
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/linalg.html">Linear Algebra</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.inv.html">mlx.core.linalg.inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.tri_inv.html">mlx.core.linalg.tri_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.norm.html">mlx.core.linalg.norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky.html">mlx.core.linalg.cholesky</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky_inv.html">mlx.core.linalg.cholesky_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.qr.html">mlx.core.linalg.qr</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.svd.html">mlx.core.linalg.svd</a></li>
</ul>

View File

@@ -8,7 +8,7 @@
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<title>LLM inference &#8212; MLX 0.16.1 documentation</title>
<title>LLM inference &#8212; MLX 0.16.2 documentation</title>
@@ -36,7 +36,7 @@
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=5b4479735964841361fd" />
<script src="../_static/vendor/fontawesome/6.1.2/js/all.min.js?digest=5b4479735964841361fd"></script>
<script src="../_static/documentation_options.js?v=179565df"></script>
<script src="../_static/documentation_options.js?v=00e1e5b9"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/scripts/sphinx-book-theme.js?v=efea14e4"></script>
@@ -131,8 +131,8 @@
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.16.1 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.16.1 documentation - Home"/>`);</script>
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.16.2 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.16.2 documentation - Home"/>`);</script>
</a></div>
@@ -457,8 +457,10 @@
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/linalg.html">Linear Algebra</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.inv.html">mlx.core.linalg.inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.tri_inv.html">mlx.core.linalg.tri_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.norm.html">mlx.core.linalg.norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky.html">mlx.core.linalg.cholesky</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky_inv.html">mlx.core.linalg.cholesky_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.qr.html">mlx.core.linalg.qr</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.svd.html">mlx.core.linalg.svd</a></li>
</ul>
@@ -864,7 +866,7 @@ is defined in less than 200 lines of python.</p>
module to concisely define the model architecture.</p>
<section id="attention-layer">
<h3>Attention layer<a class="headerlink" href="#attention-layer" title="Link to this heading">#</a></h3>
<p>We will start with the llama attention layer which notably uses the RoPE
<p>We will start with the Llama attention layer which notably uses the RoPE
positional encoding. <a class="footnote-reference brackets" href="#id4" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> In addition, our attention layer will optionally use a
key/value cache that will be concatenated with the provided keys and values to
support efficient inference.</p>

View File

@@ -8,7 +8,7 @@
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
<title>Multi-Layer Perceptron &#8212; MLX 0.16.1 documentation</title>
<title>Multi-Layer Perceptron &#8212; MLX 0.16.2 documentation</title>
@@ -36,7 +36,7 @@
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=5b4479735964841361fd" />
<script src="../_static/vendor/fontawesome/6.1.2/js/all.min.js?digest=5b4479735964841361fd"></script>
<script src="../_static/documentation_options.js?v=179565df"></script>
<script src="../_static/documentation_options.js?v=00e1e5b9"></script>
<script src="../_static/doctools.js?v=888ff710"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/scripts/sphinx-book-theme.js?v=efea14e4"></script>
@@ -131,8 +131,8 @@
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.16.1 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.16.1 documentation - Home"/>`);</script>
<img src="../_static/mlx_logo.png" class="logo__image only-light" alt="MLX 0.16.2 documentation - Home"/>
<script>document.write(`<img src="../_static/mlx_logo_dark.png" class="logo__image only-dark" alt="MLX 0.16.2 documentation - Home"/>`);</script>
</a></div>
@@ -457,8 +457,10 @@
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../python/linalg.html">Linear Algebra</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.inv.html">mlx.core.linalg.inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.tri_inv.html">mlx.core.linalg.tri_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.norm.html">mlx.core.linalg.norm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky.html">mlx.core.linalg.cholesky</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.cholesky_inv.html">mlx.core.linalg.cholesky_inv</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.qr.html">mlx.core.linalg.qr</a></li>
<li class="toctree-l2"><a class="reference internal" href="../python/_autosummary/mlx.core.linalg.svd.html">mlx.core.linalg.svd</a></li>
</ul>
@@ -884,7 +886,7 @@ set:</p>
</div>
<p>Next, setup the problem parameters and load the data. To load the data, you need our
<a class="reference external" href="https://github.com/ml-explore/mlx-examples/blob/main/mnist/mnist.py">mnist data loader</a>, which
we will import as <cite>mnist</cite>.</p>
we will import as <code class="docutils literal notranslate"><span class="pre">mnist</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">num_layers</span> <span class="o">=</span> <span class="mi">2</span>
<span class="n">hidden_dim</span> <span class="o">=</span> <span class="mi">32</span>
<span class="n">num_classes</span> <span class="o">=</span> <span class="mi">10</span>