CPU compile (#691)

* build and load shared object for cpu compile

* nits

* cpu compile tests pass

* cpu compile tests pass

* fix preamble for g++

* donation

* fix gpu buffer donation

* reuse prebuilt libraries

* faster contiguity conditoins

* fix test

* rid compiler warning

* fast erf

* Fix float16 for compile and add more types to cpu compile

* Remove a forgotten comment

* use cached libs

* nits

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
This commit is contained in:
Awni Hannun 2024-02-17 06:54:32 -08:00 committed by GitHub
parent c3965fc5ee
commit dc937b8ed3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 1716 additions and 192 deletions

View File

@ -33,7 +33,6 @@ DEFAULT(ArgSort)
DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT(Ceil)
DEFAULT_MULTI(Compiled)
DEFAULT(Concatenate)
DEFAULT(Copy)
DEFAULT_MULTI(CustomVJP)

View File

@ -1,59 +1,506 @@
// Copyright © 2023-2024 Apple Inc.
#include <queue>
#include <dlfcn.h>
#include <filesystem>
#include <list>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/compiled_preamble.h"
#include "mlx/backend/common/utils.h"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
// Build the real tape
std::pair<std::queue<array>, std::vector<array>> trace_to_real(
const std::vector<array>& trace_tape,
const std::vector<array>& trace_inputs,
const std::vector<array>& trace_outputs,
const std::vector<array>& inputs) {
std::unordered_map<uintptr_t, array> trace_to_real;
for (int i = 0; i < inputs.size(); ++i) {
trace_to_real.insert({trace_inputs[i].id(), inputs[i]});
}
std::queue<array> tape;
for (auto& a : trace_tape) {
// Find real inputs
std::vector<array> real_inputs;
for (auto& in : a.inputs()) {
real_inputs.push_back(trace_to_real.at(in.id()));
}
tape.push(
array(a.shape(), a.dtype(), a.primitive_ptr(), std::move(real_inputs)));
trace_to_real.insert({a.id(), tape.back()});
}
std::vector<array> outputs;
for (auto& o : trace_outputs) {
outputs.push_back(trace_to_real.at(o.id()));
}
return {tape, outputs};
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name);
}
void Compiled::eval(
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids) {
std::ostringstream os;
std::ostringstream constant_hasher;
// The primitives describing the tape. For unary and binary primitives this
// must be enough to describe the full computation.
for (auto& a : tape) {
a.primitive().print(os);
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
os << "C";
print_constant(constant_hasher, x);
} else {
os << ((x.size() == 1) ? "S" : "V");
}
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
continue;
}
os << kindof(x.dtype()) << x.itemsize();
}
os << "_" << std::hash<std::string>{}(constant_hasher.str());
return os.str();
}
void print_constant(std::ostream& os, const array& x) {
switch (x.dtype()) {
case float32:
return print_float_constant<float>(os, x);
case float16:
return print_float_constant<float16_t>(os, x);
case bfloat16:
return print_float_constant<bfloat16_t>(os, x);
case complex64:
return print_complex_constant<complex64_t>(os, x);
case int8:
return print_int_constant<int8_t>(os, x);
case int16:
return print_int_constant<int16_t>(os, x);
case int32:
return print_int_constant<int32_t>(os, x);
case int64:
return print_int_constant<int64_t>(os, x);
case uint8:
return print_int_constant<uint8_t>(os, x);
case uint16:
return print_int_constant<uint16_t>(os, x);
case uint32:
return print_int_constant<uint32_t>(os, x);
case uint64:
return print_int_constant<uint64_t>(os, x);
case bool_:
os << std::boolalpha << x.item<bool>();
return;
default:
throw std::runtime_error("Unsupported constant type");
}
}
std::string get_type_string(Dtype d) {
switch (d) {
case float32:
return "float";
case float16:
return "float16_t";
case bfloat16:
return "bfloat16_t";
case complex64:
return "complex64_t";
case bool_:
return "bool";
case int8:
return "int8_t";
case int16:
return "int16_t";
case int32:
return "int32_t";
case int64:
return "int64_t";
case uint8:
return "uint8_t";
case uint16:
return "uint16_t";
case uint32:
return "uint32_t";
case uint64:
return "uint64_t";
default: {
std::ostringstream msg;
msg << "Unsupported compilation type " << d;
throw std::runtime_error(msg.str());
}
}
}
inline bool is_scalar(const array& x) {
return x.size() == 1;
};
// Return a pointer to a compiled function
void* compile(
const std::string& kernel_name,
const std::string& source_code = "") {
struct DLib {
DLib(const std::string& libname) {
lib = dlopen(libname.c_str(), RTLD_NOW);
if (!lib) {
std::ostringstream msg;
msg << "Could not load C++ shared library " << dlerror();
throw std::runtime_error(msg.str());
}
}
~DLib() {
dlclose(lib);
}
void* lib;
};
// Statics to cache compiled libraries and functions
static std::list<DLib> libs;
static std::unordered_map<std::string, void*> kernels;
if (auto it = kernels.find(kernel_name); it != kernels.end()) {
return it->second;
}
if (source_code.empty()) {
return nullptr;
}
std::ostringstream shared_lib_name;
shared_lib_name << "lib" << kernel_name << ".so";
auto shared_lib_path = get_temp_file(shared_lib_name.str());
bool lib_exists = false;
{
std::ifstream f(shared_lib_path.c_str());
lib_exists = f.good();
}
if (!lib_exists) {
// Open source file and write source code to it
std::ostringstream source_file_name;
source_file_name << kernel_name << ".cpp";
auto source_file_path = get_temp_file(source_file_name.str());
std::ofstream source_file(source_file_path);
source_file << source_code;
source_file.close();
std::ostringstream build_command;
build_command << "g++ -std=c++17 -O2 -Wall -fPIC -shared "
<< source_file_path << " -o " << shared_lib_path;
std::string build_command_str = build_command.str();
system(build_command_str.c_str());
}
// load library
libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
<< kernel_name << std::endl
<< dlerror();
throw std::runtime_error(msg.str());
}
kernels.insert({kernel_name, fun});
return fun;
}
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids,
bool contiguous,
int ndim) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
// Constants are scalars that are captured by value and cannot change
auto is_constant = [&constant_ids](const array& x) {
return constant_ids.find(x.id()) != constant_ids.end();
};
NodeNamer namer;
// Start the kernel
os << "void " << kernel_name << "(void** args) {" << std::endl;
// Add the input arguments
int cnt = 0;
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
// Skip constants from the input list
if (is_constant(x)) {
continue;
}
auto tstr = get_type_string(x.dtype());
os << " " << tstr << "* " << xname << " = (" << tstr << "*)args[" << cnt++
<< "];" << std::endl;
// Scalars and contiguous need no strides
if (!is_scalar(x) && !contiguous) {
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
<< "];" << std::endl;
}
}
// Add the output arguments
for (auto& x : outputs) {
auto tstr = get_type_string(x.dtype());
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
<< "*)args[" << cnt++ << "];" << std::endl;
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
} else {
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
}
if (contiguous) {
os << " for (size_t i = 0; i < size; ++i) {" << std::endl;
} else {
for (int d = 0; d < ndim; ++d) {
os << " for (int i" << d << " = 0; i" << d << " < shape[" << d
<< "]; ++i" << d << ") {" << std::endl;
}
}
// Read the inputs in tmps
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
if (is_constant(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
print_constant(os, x);
os << ";" << std::endl;
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];" << std::endl;
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[i];" << std::endl;
} else {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = *"
<< xname << ";" << std::endl;
}
}
// Actually write the computation
for (auto& x : tape) {
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
<< " = ";
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
if (contiguous) {
os << " " << namer.get_name(x) << "[i] = tmp_" << namer.get_name(x)
<< ";" << std::endl;
} else {
os << " *" << namer.get_name(x) << "++ = tmp_" << namer.get_name(x)
<< ";" << std::endl;
}
}
// Close loops
if (contiguous) {
os << " }" << std::endl;
} else {
for (int d = ndim - 1; d >= 0; --d) {
// Update pointers
for (auto& x : inputs) {
if (is_constant(x) || is_scalar(x)) {
continue;
}
auto& xname = namer.get_name(x);
os << " " << xname << " += " << xname << "_strides[" << d << "];"
<< std::endl;
if (d < ndim - 1) {
os << " " << xname << " -= " << xname << "_strides[" << d + 1 << "]"
<< " * shape[" << d + 1 << "];" << std::endl;
}
}
os << " }" << std::endl;
}
}
// Finish the kernel
os << "}" << std::endl;
}
void Compiled::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Make the a real tape from the tracers
auto [tape, real_outputs] = trace_to_real(tape_, inputs_, outputs_, inputs);
// Run the tape
while (!tape.empty()) {
auto a = std::move(tape.front());
tape.pop();
auto outputs = a.outputs();
a.primitive().eval_cpu(a.inputs(), outputs);
a.detach();
if (kernel_lib_.empty()) {
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
}
// Copy results into outputs
for (int o = 0; o < real_outputs.size(); ++o) {
outputs[o].copy_shared_buffer(real_outputs[o]);
// Figure out which kernel we are using
auto& shape = outputs[0].shape();
bool contiguous = true;
{
bool all_contig = true;
bool all_row_contig = true;
bool all_col_contig = true;
int non_scalar_inputs = 0;
for (auto& x : inputs) {
if (x.size() == 1) {
continue;
}
non_scalar_inputs++;
bool shape_eq = x.shape() == shape;
all_contig &= (x.flags().contiguous && shape_eq);
all_row_contig &= (x.flags().row_contiguous && shape_eq);
all_col_contig &= (x.flags().col_contiguous && shape_eq);
}
if (non_scalar_inputs > 1 && !all_row_contig && !all_col_contig) {
contiguous = false;
} else if (non_scalar_inputs == 1 && !all_contig) {
contiguous = false;
}
}
// Handle all broadcasting and collect function input arguments
std::vector<void*> args;
std::vector<std::vector<size_t>> strides;
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
args.push_back((void*)x.data<void>());
if (contiguous || x.size() <= 1) {
continue;
}
// Broadcast the input to the output shape.
std::vector<size_t> xstrides;
int j = 0;
for (; j < shape.size() - x.ndim(); j++) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (int i = 0; i < x.ndim(); i++, j++) {
if (x.shape(i) == 1) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
strides.push_back(std::move(xstrides));
args.push_back(strides.back().data());
}
// Get the kernel name from the lib
int ndim = shape.size();
bool dynamic = ndim >= 8;
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
if (!contiguous) {
kernel_name += std::to_string(shape.size());
}
// Get the function
auto fn_ptr = compile(kernel_name);
// If it doesn't exist, compile it
if (fn_ptr == nullptr) {
std::ostringstream kernel;
kernel << preamble << std::endl;
kernel << "extern \"C\" {" << std::endl;
build_kernel(
kernel,
kernel_name,
inputs_,
outputs_,
tape_,
constant_ids_,
contiguous,
ndim);
// Close extern "C"
kernel << "}" << std::endl;
// Compile and get function pointer
fn_ptr = compile(kernel_name, kernel.str());
}
// Allocate space for the outputs possibly with input donation
if (contiguous) {
int o = 0;
std::vector<size_t> strides;
size_t data_size;
array::Flags flags;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().contiguous && in.size() > 1 && in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].copy_shared_buffer(in);
}
// Get representative input flags to properly set non-donated outputs
if (strides.empty() && in.size() == outputs[0].size()) {
strides = in.strides();
flags = in.flags();
data_size = in.data_size();
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
data_size,
strides,
flags);
}
} else {
int o = 0;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Row contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].copy_shared_buffer(in);
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
}
}
for (auto& x : outputs) {
args.push_back(x.data<void>());
}
if (!contiguous) {
args.push_back((void*)outputs[0].shape().data());
} else {
args.push_back((void*)outputs[0].data_size());
}
auto fun = (void (*)(void**))fn_ptr;
fun(args.data());
}
} // namespace mlx::core

View File

@ -0,0 +1,52 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <iomanip>
#include <sstream>
#include <unordered_set>
#include "mlx/array.h"
#include "mlx/primitives.h"
namespace mlx::core {
inline bool is_static_cast(const Primitive& p) {
return (
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
}
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids);
std::string get_type_string(Dtype d);
template <typename T>
void print_float_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< x.item<T>() << std::setprecision(old_precision);
}
template <typename T>
void print_int_constant(std::ostream& os, const array& x) {
os << x.item<T>();
}
template <typename T>
void print_complex_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
T constant = x.item<T>();
os << get_type_string(x.dtype()) << "("
<< std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< constant.real() << ", " << constant.imag() << ")"
<< std::setprecision(old_precision);
}
void print_constant(std::ostream& os, const array& x);
} // namespace mlx::core

File diff suppressed because it is too large Load Diff

View File

@ -43,7 +43,6 @@ DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT_MULTI(DivMod)
DEFAULT(Ceil)
DEFAULT_MULTI(Compiled)
DEFAULT(Concatenate)
DEFAULT(Convolution)
DEFAULT(Copy)

View File

@ -2,6 +2,7 @@
#include <sstream>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/compiled_preamble.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
@ -11,125 +12,6 @@
namespace mlx::core {
inline bool is_static_cast(const Primitive& p) {
return (
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
}
inline auto get_type_string(Dtype d) {
switch (d) {
case float32:
return "float";
case float16:
return "half";
case bfloat16:
return "bfloat16_t";
case bool_:
return "bool";
case int8:
return "int8_t";
case int16:
return "int16_t";
case int32:
return "int32_t";
case int64:
return "int64_t";
case uint8:
return "uint8_t";
case uint16:
return "uint16_t";
case uint32:
return "uint32_t";
case uint64:
return "uint64_t";
default: {
std::ostringstream msg;
msg << "Unsupported compilation type " << d;
throw std::runtime_error(msg.str());
}
}
}
template <typename T>
void print_float_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< x.item<T>() << std::setprecision(old_precision);
}
template <typename T>
void print_int_constant(std::ostream& os, const array& x) {
os << x.item<T>();
}
void print_constant(std::ostream& os, const array& x) {
switch (x.dtype()) {
case float32:
return print_float_constant<float>(os, x);
case float16:
return print_float_constant<float16_t>(os, x);
case bfloat16:
return print_float_constant<bfloat16_t>(os, x);
case int8:
return print_int_constant<int8_t>(os, x);
case int16:
return print_int_constant<int16_t>(os, x);
case int32:
return print_int_constant<int32_t>(os, x);
case int64:
return print_int_constant<int64_t>(os, x);
case uint8:
return print_int_constant<uint8_t>(os, x);
case uint16:
return print_int_constant<uint16_t>(os, x);
case uint32:
return print_int_constant<uint32_t>(os, x);
case uint64:
return print_int_constant<uint64_t>(os, x);
case bool_:
os << std::boolalpha << x.item<bool>();
return;
default:
throw std::runtime_error("Unsupported constant type");
}
}
inline std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids) {
std::ostringstream os;
std::ostringstream constant_hasher;
// The primitives describing the tape. For unary and binary primitives this
// must be enough to describe the full computation.
for (auto& a : tape) {
a.primitive().print(os);
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
os << "C";
print_constant(constant_hasher, x);
} else {
os << ((x.size() == 1) ? "S" : "V");
}
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
continue;
}
os << kindof(x.dtype()) << x.itemsize();
}
os << "_" << std::hash<std::string>{}(constant_hasher.str());
return os.str();
}
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
@ -286,7 +168,7 @@ inline void build_kernel(
if (cnt > 31) {
std::ostringstream msg;
msg << "[compile] Too many inputs/outputs fused in the Metal Compile "
msg << "[compile] Too many inputs/outputs fused in the Metal Compiled "
<< "primitive which exhausted the available argument buffers for "
<< "the kernel. Please file an issue with the function that results "
<< "in this error. The name of the kernel is '" << kernel_name << "'";
@ -348,11 +230,6 @@ void Compiled::eval_gpu(
lib = d.get_library(kernel_lib_, kernel_source_);
}
// Allocate space for the outputs
for (auto& out : outputs) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
// Figure out which kernel we are using
auto& output_shape = outputs[0].shape();
bool contiguous = true;
@ -443,6 +320,27 @@ void Compiled::eval_gpu(
}
}
// Allocate space for the outputs possibly with input donation
{
int o = 0;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Row contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].move_shared_buffer(in);
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
}
}
// Put the outputs in
for (auto& x : outputs) {
set_array_buffer(compute_encoder, x, cnt++);

View File

@ -2,3 +2,5 @@
#include "mlx/backend/metal/kernels/binary.h"
#include "mlx/backend/metal/kernels/unary.h"
typedef half float16_t;

View File

@ -319,6 +319,9 @@ void compile_simplify(
case 1:
v = *a.data<uint8_t>();
break;
case 2:
v = *a.data<uint16_t>();
break;
case 4:
v = *a.data<uint32_t>();
break;

View File

@ -3,8 +3,8 @@
namespace mlx::core::fast {
// Custom primitive accepts a fallback function which it uses for
// transformations. Transformations are virtual so that derived classes may to
// override the default behavior
// transformations. Transformations are virtual so that derived classes may
// override the default behavior.
class Custom : public Primitive {
public:
explicit Custom(

View File

@ -496,8 +496,6 @@ class Compiled : public Primitive {
std::string kernel_lib_;
std::string kernel_source_;
void eval(const std::vector<array>& inputs, std::vector<array>& out);
};
class Concatenate : public UnaryPrimitive {

View File

@ -60,25 +60,30 @@ inline complex64_t operator-(const complex64_t& v) {
// clang-format off
#define complex_binop_helper(_op_, _operator_, itype) \
inline complex64_t _operator_(itype x, const complex64_t& y) { \
return x _op_ static_cast<std::complex<float>>(y); \
return static_cast<complex64_t>(x) _op_ y; \
} \
inline complex64_t _operator_(const complex64_t& x, itype y) { \
return static_cast<std::complex<float>>(x) _op_ y; \
return x _op_ static_cast<complex64_t>(y); \
}
#define complex_binop(_op_, _operator_) \
inline complex64_t _operator_(const complex64_t& x, const complex64_t& y) { \
return static_cast<std::complex<float>>(x) \
_op_ static_cast<std::complex<float>>(y); \
} \
complex_binop_helper(_op_, _operator_, bool) \
complex_binop_helper(_op_, _operator_, uint32_t) \
complex_binop_helper(_op_, _operator_, uint64_t) \
complex_binop_helper(_op_, _operator_, int32_t) \
complex_binop_helper(_op_, _operator_, int64_t) \
complex_binop_helper(_op_, _operator_, float16_t) \
complex_binop_helper(_op_, _operator_, bfloat16_t) \
complex_binop_helper(_op_, _operator_, const std::complex<float>&) \
#define complex_binop(_op_, _operator_) \
inline complex64_t _operator_(const std::complex<float>& x, const complex64_t& y) { \
return x _op_ static_cast<std::complex<float>>(y); \
} \
inline complex64_t _operator_(const complex64_t& x, const std::complex<float>& y) { \
return static_cast<std::complex<float>>(x) _op_ y; \
} \
inline complex64_t _operator_(const complex64_t& x, const complex64_t& y) { \
return static_cast<std::complex<float>>(x) \
_op_ static_cast<std::complex<float>>(y); \
} \
complex_binop_helper(_op_, _operator_, bool) \
complex_binop_helper(_op_, _operator_, uint32_t) \
complex_binop_helper(_op_, _operator_, uint64_t) \
complex_binop_helper(_op_, _operator_, int32_t) \
complex_binop_helper(_op_, _operator_, int64_t) \
complex_binop_helper(_op_, _operator_, float16_t) \
complex_binop_helper(_op_, _operator_, bfloat16_t) \
complex_binop_helper(_op_, _operator_, float)
// clang-format on

View File

@ -77,7 +77,7 @@ std::ostream& operator<<(std::ostream& os, array a);
std::ostream& operator<<(std::ostream& os, const std::vector<int>& v);
std::ostream& operator<<(std::ostream& os, const std::vector<size_t>& v);
inline std::ostream& operator<<(std::ostream& os, const complex64_t& v) {
return os << v.real() << (v.imag() > 0 ? "+" : "") << v.imag() << "j";
return os << v.real() << (v.imag() >= 0 ? "+" : "") << v.imag() << "j";
}
inline std::ostream& operator<<(std::ostream& os, const float16_t& v) {
return os << static_cast<float>(v);

View File

@ -44,8 +44,8 @@ TEST_CASE("test compile with grad") {
auto y = array(1.0f);
auto grads_expected = grad_fun({x, y});
auto grads_compile = compile(grad_fun)({x, y});
CHECK_EQ(grads_compile[0].item<float>(), grads_expected[0].item<float>());
CHECK_EQ(grads_compile[1].item<float>(), grads_expected[1].item<float>());
CHECK(allclose(grads_compile[0], grads_expected[0]).item<bool>());
CHECK(allclose(grads_compile[1], grads_expected[1]).item<bool>());
}
TEST_CASE("test compile inputs with primitive") {
@ -272,7 +272,7 @@ TEST_CASE("test compile unary fused") {
CHECK_EQ(out.inputs()[0].id(), x.id());
auto expected_out = unary_fused_1({array(2.0)})[0];
CHECK_EQ(out.item<float>(), expected_out.item<float>());
CHECK(allclose(out, expected_out).item<bool>());
}
{