[CUDA] Use GEMM with epilogue instead of AddMM (#2569)

This commit is contained in:
Cheng
2025-09-09 13:18:49 +09:00
committed by GitHub
parent 17310d91a6
commit dde3682b69
3 changed files with 128 additions and 69 deletions

View File

@@ -85,10 +85,10 @@ cublasLtMatrixLayout_t create_matrix_layout(
int32_t batch_count,
int64_t batch_stride) {
cublasLtMatrixLayout_t desc;
if (transposed) {
std::swap(rows, cols);
}
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
if (batch_count > 1) {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
@@ -138,25 +138,34 @@ CublasGemm::CublasGemm(
CUBLASLT_MATMUL_DESC_POINTER_MODE,
&pointer_mode,
sizeof(int32_t)));
cublasOperation_t op = CUBLAS_OP_N;
// In cublasLt matrices use column-major layout, while it is possible to use
// the CUBLASLT_ORDER_ROW option to switch to row-major layout, the bias
// epilogue does not work with the option. So instead we swap A and B to make
// cublasLt return the row-major result, which works because:
// - the data of a matrix in row-major layout is identical to its transpose in
// column-major layout
// - C^T = (A @ B)^T = B^T @ A^T
cublasOperation_t a_op = b_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSA,
&op,
&a_op,
sizeof(cublasOperation_t)));
cublasOperation_t b_op = a_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSB,
&op,
&b_op,
sizeof(cublasOperation_t)));
auto type = dtype_to_cublas_type(dtype);
a_desc_ = create_matrix_layout(
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
type, b_cols, b_rows, b_transposed, ldb, batch_count, b_batch_stride);
b_desc_ = create_matrix_layout(
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
type, a_cols, a_rows, a_transposed, lda, batch_count, a_batch_stride);
out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
type, b_cols, a_rows, false, b_cols, batch_count, a_rows * b_cols);
}
CublasGemm::CublasGemm(
@@ -191,7 +200,7 @@ CublasGemm::CublasGemm(
b_batch_stride) {
auto type = dtype_to_cublas_type(dtype);
c_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
type, b_cols, a_rows, false, ldc, batch_count, c_batch_stride);
}
CublasGemm::~CublasGemm() {
@@ -213,14 +222,25 @@ void CublasGemm::set_out(
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
out_desc_ = create_matrix_layout(
dtype_to_cublas_type(dtype),
rows,
cols,
rows,
transposed,
ld,
batch_count,
batch_stride);
}
void CublasGemm::set_bias(void* bias) {
cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_BIAS;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_EPILOGUE,
&epilogue,
sizeof(epilogue)));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias)));
}
void CublasGemm::run(
cu::CommandEncoder& encoder,
array& out,
@@ -330,9 +350,9 @@ void CublasGemm::execute(
handle_,
matmul_desc_,
&alpha,
a,
b, // a and b are swapped
a_desc_,
b,
a,
b_desc_,
&beta,
c ? c : out,

View File

@@ -55,6 +55,8 @@ class CublasGemm {
int32_t batch_count,
int64_t batch_stride);
void set_bias(void* bias);
void run(
cu::CommandEncoder& encoder,
array& out,