nits and adding it to test

This commit is contained in:
Goekdeniz-Guelmez
2025-07-16 19:13:40 +02:00
parent 650c956fe6
commit df6d9e972f
2 changed files with 51 additions and 3 deletions

View File

@@ -933,13 +933,13 @@ class Muon(Optimizer):
gradient = gradient + self.weight_decay * parameter
# Update momentum buffer
v = self.momentum * state.get("v")
v = self.momentum * state["v"]
v = v + (1 - self.momentum) * gradient
state["v"] = v
# Get effective gradient
if self.nesterov:
effective_grad = gradient * self.momentum + v * (1 - self.momentum)
effective_grad = gradient * (1 - self.momentum) + v * self.momentum
else:
effective_grad = v
@@ -963,7 +963,8 @@ class Muon(Optimizer):
orthogonalized_grad = mx.reshape(orthogonalized_grad, original_shape)
# Calculate scaling factor
scale_factor = max(1, parameter.shape[-2] / parameter.shape[-1]) ** 0.5
# scale_factor = max(1, parameter.shape[-2] / parameter.shape[-1]) ** 0.5
scale_factor = max(1, effective_grad.shape[-2] / effective_grad.shape[-1]) ** 0.5
return parameter - self.learning_rate.astype(gradient.dtype) * orthogonalized_grad * scale_factor

View File

@@ -286,6 +286,53 @@ class TestOptimizers(mlx_tests.MLXTestCase):
self.assertEqual(xp["x"].shape, x.shape)
self.assertEqual(optimizer.state["step"], 2)
def test_muon(self):
params = {
"first": [mx.zeros((10, 5)), mx.zeros((1,))],
"second": mx.zeros((3, 3)),
"conv": mx.zeros((16, 8, 3, 3)),
}
grads = tree_map(lambda x: mx.ones_like(x), params)
# Explicit init
optim = opt.Muon(learning_rate=1e-2, momentum=0.95, nesterov=True)
optim.init(params)
self.assertTrue(
tree_equal(
lambda p, s: mx.array_equal(s["v"], mx.zeros_like(p)),
params,
optim.state,
)
)
# Test update
updated_params = optim.apply_gradients(grads, params)
# Check that shapes are preserved
self.assertTrue(
tree_equal(
lambda p, u: p.shape == u.shape,
params,
updated_params,
)
)
# Check that parameters actually changed
self.assertFalse(
tree_equal(
lambda p, u: mx.array_equal(p, u),
params,
updated_params,
)
)
# Test with different configurations
optim_no_nesterov = opt.Muon(learning_rate=1e-2, momentum=0.95, nesterov=False)
optim_no_nesterov.apply_gradients(grads, params)
optim_no_momentum = opt.Muon(learning_rate=1e-2, momentum=0.0)
optim_no_momentum.apply_gradients(grads, params)
def test_compiled_optimizer(self):
model = nn.Linear(10, 10)
x = mx.random.uniform(shape=(2, 10))