Triplet Loss (#211)

* Triplet Loss

* Requested Changes

* Margin to alpha
This commit is contained in:
Emircan Erol
2023-12-19 23:37:12 +03:00
committed by GitHub
parent dfa9f4bc58
commit e549f84532
3 changed files with 69 additions and 0 deletions

View File

@@ -232,6 +232,48 @@ def smooth_l1_loss(
return _reduce(loss, reduction)
def triplet_loss(
anchors: mx.array,
positives: mx.array,
negatives: mx.array,
axis: int = -1,
p: int = 2,
margin: float = 1.0,
eps: float = 1e-6,
reduction: str = "none",
) -> mx.array:
r"""
Computes the triplet loss for a set of anchor, positive, and negative samples.
Margin is represented with alpha in the math section.
.. math::
L_{\text{triplet}} = \max\left(\|A - P\|_p - \|A - N\|_p + \alpha, 0\right)
Args:
anchors (array): The anchor samples.
positives (array): The positive samples.
negatives (array): The negative samples.
axis (int, optional): The distribution axis. Default: ``-1``.
p (int, optional): The norm degree for pairwise distance. Default: ``2``.
margin (float, optional): Margin for the triplet loss. Defaults to ``1.0``.
eps (float, optional): Small positive constant to prevent numerical instability. Defaults to ``1e-6``.
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
Returns:
array: Computed triplet loss. If reduction is "none", returns a tensor of the same shape as input;
if reduction is "mean" or "sum", returns a scalar tensor.
"""
loss = mx.maximum(
mx.sqrt(mx.power(anchors - positives, p).sum(axis) + eps)
- mx.sqrt(mx.power(anchors - negatives, p).sum(axis) + eps)
+ margin,
0,
)
return _reduce(loss, reduction)
def _reduce(loss: mx.array, reduction: str = "none"):
if reduction == "mean":
return mx.mean(loss)