mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-18 01:50:16 +08:00
jagrit's commit files
This commit is contained in:
124
python/mlx/nn/layers/convolution.py
Normal file
124
python/mlx/nn/layers/convolution.py
Normal file
@@ -0,0 +1,124 @@
|
||||
import math
|
||||
from typing import Union
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.nn.layers.base import Module
|
||||
|
||||
|
||||
class Conv1d(Module):
|
||||
"""Applies a 1-dimensional convolution over the multi-channel input sequence.
|
||||
|
||||
The channels are expected to be last i.e. the input shape should be ``NLC`` where:
|
||||
- ``N`` is the batch dimension
|
||||
- ``L`` is the sequence length
|
||||
- ``C`` is the number of input channels
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of input channels
|
||||
out_channels (int): The number of output channels
|
||||
kernel_size (int): The size of the convolution filters
|
||||
stride (int, optional): The stride when applying the filter.
|
||||
Default: 1.
|
||||
padding (int, optional): How many positions to 0-pad the input with.
|
||||
Default: 0.
|
||||
bias (bool, optional): If ``True`` add a learnable bias to the output.
|
||||
Default: ``True``
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: int,
|
||||
stride: int = 1,
|
||||
padding: int = 0,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
scale = math.sqrt(1 / (in_channels * kernel_size))
|
||||
self.weight = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(out_channels, kernel_size, in_channels),
|
||||
)
|
||||
if bias:
|
||||
self.bias = mx.zeros((out_channels,))
|
||||
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
|
||||
f"padding={self.padding}, bias={'bias' in self}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
y = mx.conv1d(x, self.weight, self.stride, self.padding)
|
||||
if "bias" in self:
|
||||
y = y + self.bias
|
||||
return y
|
||||
|
||||
|
||||
class Conv2d(Module):
|
||||
"""Applies a 2-dimensional convolution over the multi-channel input image.
|
||||
|
||||
The channels are expected to be last i.e. the input shape should be ``NHWC`` where:
|
||||
- ``N`` is the batch dimension
|
||||
- ``H`` is the input image height
|
||||
- ``W`` is the input image width
|
||||
- ``C`` is the number of input channels
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of input channels.
|
||||
out_channels (int): The number of output channels.
|
||||
kernel_size (int or tuple): The size of the convolution filters.
|
||||
stride (int or tuple, optional): The size of the stride when
|
||||
applying the filter. Default: 0.
|
||||
padding (int or tuple, optional): How many positions to 0-pad
|
||||
the input with. Default: 0.
|
||||
bias (bool, optional): If ``True`` add a learnable bias to the
|
||||
output. Default: ``True``
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: Union[int, tuple],
|
||||
stride: Union[int, tuple] = 1,
|
||||
padding: Union[int, tuple] = 0,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
kernel_size, stride, padding = map(
|
||||
lambda x: (x, x) if isinstance(x, int) else x,
|
||||
(kernel_size, stride, padding),
|
||||
)
|
||||
scale = math.sqrt(1 / (in_channels * kernel_size[0] * kernel_size[1]))
|
||||
self.weight = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(out_channels, *kernel_size, in_channels),
|
||||
)
|
||||
if bias:
|
||||
self.bias = mx.zeros((out_channels,))
|
||||
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
|
||||
f"padding={self.padding}, bias={'bias' in self}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
y = mx.conv2d(x, self.weight, self.stride, self.padding)
|
||||
if "bias" in self:
|
||||
y = y + self.bias
|
||||
return y
|
28
python/mlx/nn/layers/embedding.py
Normal file
28
python/mlx/nn/layers/embedding.py
Normal file
@@ -0,0 +1,28 @@
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.nn.layers.base import Module
|
||||
|
||||
|
||||
class Embedding(Module):
|
||||
"""Implements a simple lookup table that maps each input integer to a
|
||||
high-dimensional vector.
|
||||
|
||||
Typically used to embed discrete tokens for processing by neural networks.
|
||||
|
||||
Args:
|
||||
num_embeddings (int): How many possible discrete tokens can we embed.
|
||||
Usually called the vocabulary size.
|
||||
dims (int): The dimensionality of the embeddings.
|
||||
"""
|
||||
|
||||
def __init__(self, num_embeddings: int, dims: int):
|
||||
super().__init__()
|
||||
scale = math.sqrt(1 / dims)
|
||||
self.weight = mx.random.normal((num_embeddings, dims)) * scale
|
||||
|
||||
def _extra_repr(self):
|
||||
return f"{self.weight.shape[0]}, {self.weight.shape[1]}"
|
||||
|
||||
def __call__(self, x):
|
||||
return self.weight[x]
|
34
python/mlx/nn/layers/linear.py
Normal file
34
python/mlx/nn/layers/linear.py
Normal file
@@ -0,0 +1,34 @@
|
||||
import math
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.nn.layers.base import Module
|
||||
|
||||
|
||||
class Linear(Module):
|
||||
"""Applies an affine transformation to the input.
|
||||
|
||||
Args:
|
||||
input_dims (int): The dimensionality of the input features
|
||||
output_dims (int): The dimensionality of the output features
|
||||
bias (bool): If set to False then the layer will not use a bias
|
||||
"""
|
||||
|
||||
def __init__(self, input_dims: int, output_dims: int, bias: bool = True):
|
||||
super().__init__()
|
||||
scale = math.sqrt(1 / input_dims)
|
||||
self.weight = mx.random.uniform(
|
||||
low=-scale,
|
||||
high=scale,
|
||||
shape=(output_dims, input_dims),
|
||||
)
|
||||
if bias:
|
||||
self.bias = mx.zeros((output_dims,))
|
||||
|
||||
def _extra_repr(self):
|
||||
return f"input_dims={self.weight.shape[1]}, output_dims={self.weight.shape[0]}, bias={'bias' in self}"
|
||||
|
||||
def __call__(self, x):
|
||||
x = x @ self.weight.T
|
||||
if "bias" in self:
|
||||
x = x + self.bias
|
||||
return x
|
Reference in New Issue
Block a user