jagrit's commit files

This commit is contained in:
Jagrit Digani
2023-11-29 10:52:08 -08:00
parent d1f86272a2
commit e6306cfee9
74 changed files with 15964 additions and 2 deletions

41
tests/allocator_tests.cpp Normal file
View File

@@ -0,0 +1,41 @@
#include <stdexcept>
#include "doctest/doctest.h"
#include "mlx/allocator.h"
using namespace mlx::core;
TEST_CASE("test simple allocations") {
{
auto buffer = allocator::malloc(sizeof(float));
auto fptr = static_cast<float*>(buffer.raw_ptr());
*fptr = 0.5f;
CHECK_EQ(*fptr, 0.5f);
allocator::free(buffer);
}
{
auto buffer = allocator::malloc(128 * sizeof(int));
int* ptr = static_cast<int*>(buffer.raw_ptr());
for (int i = 0; i < 128; ++i) {
ptr[i] = i;
}
allocator::free(buffer);
}
{
auto buffer = allocator::malloc(0);
allocator::free(buffer);
}
}
TEST_CASE("test large allocations") {
size_t size = 1 << 30;
for (int i = 0; i < 100; ++i) {
auto buffer = allocator::malloc(size);
allocator::free(buffer);
}
// Shouldn't be able to allocate an exabyte anytime soon.
CHECK_THROWS_AS(allocator::malloc(1ull << 60), std::runtime_error);
}

589
tests/array_tests.cpp Normal file
View File

@@ -0,0 +1,589 @@
#include <climits>
#include "doctest/doctest.h"
#include "mlx/mlx.h"
using namespace mlx::core;
TEST_CASE("test array basics") {
// Scalar
array x(1.0);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.ndim(), 0);
CHECK_EQ(x.shape(), std::vector<int>{});
CHECK_THROWS_AS(x.shape(0), std::out_of_range);
CHECK_THROWS_AS(x.shape(-1), std::out_of_range);
CHECK_EQ(x.strides(), std::vector<size_t>{});
CHECK_EQ(x.itemsize(), sizeof(float));
CHECK_EQ(x.nbytes(), sizeof(float));
CHECK_EQ(x.dtype(), float32);
CHECK_EQ(x.item<float>(), 1.0);
// Scalar with specified type
x = array(1, float32);
CHECK_EQ(x.dtype(), float32);
CHECK_EQ(x.item<float>(), 1.0);
// Scalar with specified type
x = array(1, bool_);
CHECK_EQ(x.dtype(), bool_);
CHECK_EQ(x.itemsize(), sizeof(bool));
CHECK_EQ(x.nbytes(), sizeof(bool));
CHECK_EQ(x.item<bool>(), true);
// Check shaped arrays
x = array({1.0});
CHECK_EQ(x.dtype(), float32);
CHECK_EQ(x.size(), 1);
CHECK_EQ(x.ndim(), 1);
CHECK_EQ(x.shape(), std::vector<int>{1});
CHECK_EQ(x.shape(0), 1);
CHECK_EQ(x.shape(-1), 1);
CHECK_THROWS_AS(x.shape(1), std::out_of_range);
CHECK_THROWS_AS(x.shape(-2), std::out_of_range);
CHECK_EQ(x.strides(), std::vector<size_t>{1});
CHECK_EQ(x.item<float>(), 1.0);
// Check empty array
x = array({});
CHECK_EQ(x.size(), 0);
CHECK_EQ(x.dtype(), float32);
CHECK_EQ(x.itemsize(), sizeof(float));
CHECK_EQ(x.nbytes(), 0);
CHECK_THROWS_AS(x.item<float>(), std::invalid_argument);
x = array({1.0, 1.0});
CHECK_EQ(x.size(), 2);
CHECK_EQ(x.shape(), std::vector<int>{2});
CHECK_EQ(x.itemsize(), sizeof(float));
CHECK_EQ(x.nbytes(), x.itemsize() * x.size());
// Accessing item in non-scalar array throws
CHECK_THROWS_AS(x.item<float>(), std::invalid_argument);
x = array({1.0, 1.0, 1.0}, {1, 3});
CHECK(x.size() == 3);
CHECK(x.shape() == std::vector<int>{1, 3});
CHECK(x.strides() == std::vector<size_t>{3, 1});
// Test wrong size/shapes throw:
CHECK_THROWS_AS(array({1.0, 1.0, 1.0}, {4}), std::invalid_argument);
CHECK_THROWS_AS(array({1.0, 1.0, 1.0}, {1, 4}), std::invalid_argument);
CHECK_THROWS_AS(array({1.0, 1.0, 1.0}, {1, 2}), std::invalid_argument);
// Test array ids work as expected
x = array(1.0);
auto y = x;
CHECK_EQ(y.id(), x.id());
array z(2.0);
CHECK_NE(z.id(), x.id());
z = x;
CHECK_EQ(z.id(), x.id());
// Array creation from pointer
float data[] = {0.0, 1.0, 2.0, 3.0};
x = array(data, {4});
CHECK_EQ(x.dtype(), float32);
CHECK(array_equal(x, array({0.0, 1.0, 2.0, 3.0})).item<bool>());
// Array creation from vectors
{
std::vector<int> data = {0, 1, 2, 3};
x = array(data.begin(), {4});
CHECK_EQ(x.dtype(), int32);
CHECK(array_equal(x, array({0, 1, 2, 3})).item<bool>());
}
{
std::vector<bool> data = {false, true, false, true};
x = array(data.begin(), {4});
CHECK_EQ(x.dtype(), bool_);
CHECK(array_equal(x, array({false, true, false, true})).item<bool>());
}
}
TEST_CASE("test array types") {
#define basic_dtype_test(T, mlx_type) \
T val = 42; \
array x(val); \
CHECK_EQ(x.dtype(), mlx_type); \
CHECK_EQ(x.item<T>(), val); \
x = array({val, val}); \
CHECK_EQ(x.dtype(), mlx_type);
// bool_
{
array x(true);
CHECK_EQ(x.dtype(), bool_);
CHECK_EQ(x.item<bool>(), true);
x = array({true, false});
CHECK_EQ(x.dtype(), bool_);
x = array({true, false}, float32);
CHECK_EQ(x.dtype(), float32);
CHECK(array_equal(x, array({1.0f, 0.0f})).item<bool>());
}
// uint8
{ basic_dtype_test(uint8_t, uint8); }
// uint16
{ basic_dtype_test(uint16_t, uint16); }
// uint32
{ basic_dtype_test(uint32_t, uint32); }
// uint64
{ basic_dtype_test(uint64_t, uint64); }
// int8
{ basic_dtype_test(int8_t, int8); }
// int16
{ basic_dtype_test(int16_t, int16); }
// int32
{ basic_dtype_test(int32_t, int32); }
// int64
{ basic_dtype_test(int64_t, int64); }
// float16
{ basic_dtype_test(float16_t, float16); }
// float32
{ basic_dtype_test(float, float32); }
// bfloat16
{ basic_dtype_test(bfloat16_t, bfloat16); }
// uint32
{
uint32_t val = UINT_MAX;
array x(val);
CHECK_EQ(x.dtype(), uint32);
CHECK_EQ(x.item<uint32_t>(), val);
x = array({1u, 2u});
CHECK_EQ(x.dtype(), uint32);
}
// int32
{
array x(-1);
CHECK_EQ(x.dtype(), int32);
CHECK_EQ(x.item<int>(), -1);
x = array({-1, 2});
CHECK_EQ(x.dtype(), int32);
std::vector<int> data{0, 1, 2};
x = array(data.data(), {static_cast<int>(data.size())}, bool_);
CHECK_EQ(x.dtype(), bool_);
CHECK(array_equal(x, array({false, true, true})).item<bool>());
}
// int64
{
int64_t val = static_cast<int64_t>(INT_MIN) - 1;
array x(val);
CHECK_EQ(x.dtype(), int64);
CHECK_EQ(x.item<int64_t>(), val);
x = array({val, val});
CHECK_EQ(x.dtype(), int64);
}
// float32
{
array x(3.14f);
CHECK_EQ(x.dtype(), float32);
CHECK_EQ(x.item<float>(), 3.14f);
x = array(1.25);
CHECK_EQ(x.dtype(), float32);
CHECK_EQ(x.item<float>(), 1.25f);
x = array({1.0f, 2.0f});
CHECK_EQ(x.dtype(), float32);
x = array({1.0, 2.0});
CHECK_EQ(x.dtype(), float32);
std::vector<double> data{1.0, 2.0, 4.0};
x = array(data.data(), {static_cast<int>(data.size())});
CHECK_EQ(x.dtype(), float32);
CHECK(array_equal(x, array({1.0f, 2.0f, 4.0f})).item<bool>());
}
// complex64
{
complex64_t v = {1.0f, 1.0f};
array x(v);
CHECK_EQ(x.dtype(), complex64);
CHECK_EQ(x.item<complex64_t>(), v);
array y(std::complex<float>{1.0f, 1.0f});
CHECK_EQ(x.dtype(), complex64);
CHECK_EQ(x.item<complex64_t>(), v);
}
#undef basic_dtype_test
#define basic_dtype_str_test(s, dtype) \
CHECK_EQ(s, dtype_to_array_protocol(dtype)); \
CHECK_EQ(dtype_from_array_protocol(s), dtype);
// To and from str
{
basic_dtype_str_test("|b1", bool_);
basic_dtype_str_test("|u1", uint8);
basic_dtype_str_test("<u2", uint16);
basic_dtype_str_test("<u4", uint32);
basic_dtype_str_test("<u8", uint64);
basic_dtype_str_test("|i1", int8);
basic_dtype_str_test("<i2", int16);
basic_dtype_str_test("<i4", int32);
basic_dtype_str_test("<i8", int64);
basic_dtype_str_test("<f2", float16);
basic_dtype_str_test("<f4", float32);
basic_dtype_str_test("<V2", bfloat16);
basic_dtype_str_test("<c8", complex64);
}
#undef basic_dtype_str_test
}
TEST_CASE("test array metadata") {
array x(1.0f);
CHECK_EQ(x.data_size(), 1);
CHECK_EQ(x.flags().contiguous, true);
CHECK_EQ(x.flags().row_contiguous, true);
CHECK_EQ(x.flags().col_contiguous, true);
x = array({1.0f}, {1, 1, 1});
CHECK_EQ(x.data_size(), 1);
CHECK_EQ(x.flags().contiguous, true);
CHECK_EQ(x.flags().row_contiguous, true);
CHECK_EQ(x.flags().col_contiguous, true);
x = array({1.0f, 1.0f}, {1, 2});
CHECK_EQ(x.data_size(), 2);
CHECK_EQ(x.flags().contiguous, true);
CHECK_EQ(x.flags().row_contiguous, true);
CHECK_EQ(x.flags().col_contiguous, true);
x = zeros({1, 1, 4});
eval(x);
CHECK_EQ(x.data_size(), 4);
CHECK_EQ(x.flags().contiguous, true);
CHECK_EQ(x.flags().row_contiguous, true);
CHECK_EQ(x.flags().col_contiguous, true);
x = zeros({2, 4});
eval(x);
CHECK_EQ(x.data_size(), 8);
CHECK_EQ(x.flags().contiguous, true);
CHECK_EQ(x.flags().row_contiguous, true);
CHECK_EQ(x.flags().col_contiguous, false);
x = array(1.0f);
auto y = broadcast_to(x, {1, 1, 1});
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
y = broadcast_to(x, {2, 8, 10});
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, false);
CHECK_EQ(y.flags().col_contiguous, false);
y = broadcast_to(x, {1, 0});
eval(y);
CHECK_EQ(y.data_size(), 0);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
y = broadcast_to(zeros({4, 2, 1}), {4, 2, 0});
eval(y);
CHECK_EQ(y.data_size(), 0);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array(1.0f);
y = transpose(x);
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({1, 1, 1});
y = transpose(x);
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({1, 1, 1});
y = transpose(x, {0, 1, 2});
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({1, 1, 1});
y = transpose(x, {1, 2, 0});
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({4, 1});
y = transpose(x);
eval(y);
CHECK_EQ(y.data_size(), 4);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({2, 3, 4});
y = transpose(x);
eval(y);
CHECK_EQ(y.data_size(), 24);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, false);
CHECK_EQ(y.flags().col_contiguous, true);
y = transpose(x, {0, 2, 1});
eval(y);
CHECK_EQ(y.data_size(), 24);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, false);
CHECK_EQ(y.flags().col_contiguous, false);
y = transpose(transpose(x, {0, 2, 1}), {0, 2, 1});
eval(y);
CHECK_EQ(y.data_size(), 24);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, false);
x = array(1.0f);
y = reshape(x, {1, 1, 1});
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({2, 4});
y = reshape(x, {8});
eval(y);
CHECK_EQ(y.data_size(), 8);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
y = reshape(x, {8, 1, 1});
eval(y);
CHECK_EQ(y.data_size(), 8);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
y = reshape(x, {1, 8, 1});
eval(y);
CHECK_EQ(y.data_size(), 8);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({12});
y = reshape(x, {2, 3, 2});
eval(y);
CHECK_EQ(y.data_size(), 12);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, false);
x = array(1.0f);
y = slice(x, {}, {});
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({1.0f});
y = slice(x, {-10}, {10}, {10});
eval(y);
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({1.0f, 2.0f, 3.0f}, {1, 3});
y = slice(x, {0, 0}, {1, 3}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 3);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({1.0f, 2.0f, 3.0f}, {1, 3});
y = slice(x, {0, 0}, {1, 3}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 3);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({1.0f, 2.0f, 3.0f}, {1, 3});
y = slice(x, {0, 0}, {0, 3}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 0);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({1.0f, 2.0f, 3.0f}, {1, 3});
y = slice(x, {0, 0}, {1, 2}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 2);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({1.0f, 2.0f, 3.0f}, {1, 3});
y = slice(x, {0, 0}, {1, 2}, {2, 3});
eval(y);
CHECK_EQ(y.shape(), std::vector<int>{1, 1});
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({0.0f, 1.0f, 2.0f, 3.0f}, {1, 4});
y = slice(x, {0, 0}, {1, 4}, {1, 2});
eval(y);
CHECK_EQ(y.shape(), std::vector<int>{1, 2});
CHECK_EQ(y.flags().contiguous, false);
CHECK_EQ(y.flags().row_contiguous, false);
CHECK_EQ(y.flags().col_contiguous, false);
x = broadcast_to(array(1.0f), {4, 10});
y = slice(x, {0, 0}, {4, 10}, {2, 2});
eval(y);
CHECK_EQ(y.shape(), std::vector<int>{2, 5});
CHECK_EQ(y.data_size(), 1);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, false);
CHECK_EQ(y.flags().col_contiguous, false);
x = broadcast_to(array({1.0f, 2.0f}), {4, 2});
y = slice(x, {0, 0}, {1, 2}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 2);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
y = slice(x, {1, 0}, {2, 2}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 2);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
x = array({0.0f, 1.0f, 2.0f, 3.0f}, {2, 2});
y = slice(x, {0, 0}, {2, 2}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 4);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, false);
y = slice(transpose(x), {0, 0}, {2, 2}, {1, 1});
eval(y);
CHECK_EQ(y.data_size(), 4);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, false);
CHECK_EQ(y.flags().col_contiguous, true);
x = ones({2, 4});
auto out = split(x, 2);
eval(out);
for (auto y : out) {
CHECK_EQ(y.data_size(), 4);
CHECK_EQ(y.flags().contiguous, true);
CHECK_EQ(y.flags().row_contiguous, true);
CHECK_EQ(y.flags().col_contiguous, true);
}
out = split(x, 4, 1);
eval(out);
for (auto y : out) {
CHECK_EQ(y.flags().contiguous, false);
CHECK_EQ(y.flags().row_contiguous, false);
CHECK_EQ(y.flags().col_contiguous, false);
}
}
TEST_CASE("test array iteration") {
// Dim 0 arrays
auto arr = array(1);
CHECK_THROWS(arr.begin());
// Iterated arrays are read only
CHECK(std::is_const_v<decltype(*arr.begin())>);
arr = array({1, 2, 3, 4, 5});
int i = 0;
for (auto a : arr) {
i++;
CHECK_EQ(a.item<int>(), i);
}
CHECK_EQ(i, 5);
arr = array({1, 2, 3, 4}, {2, 2});
CHECK(array_equal(*arr.begin(), array({1, 2})).item<bool>());
CHECK(array_equal(*(arr.begin() + 1), array({3, 4})).item<bool>());
CHECK_EQ(arr.begin() + 2, arr.end());
}
TEST_CASE("test array shared buffer") {
std::vector<int> shape = {2, 2};
int n_elem = shape[0] * shape[1];
allocator::Buffer buf_b = allocator::malloc(n_elem * sizeof(float));
void* buf_b_ptr = buf_b.raw_ptr();
float* float_buf_b = (float*)buf_b_ptr;
for (int i = 0; i < n_elem; i++) {
float_buf_b[i] = 2.;
}
CHECK_EQ(float_buf_b[0], ((float*)buf_b_ptr)[0]);
auto deleter = [float_buf_b](allocator::Buffer buf) {
CHECK_EQ(float_buf_b, (float*)buf.raw_ptr());
CHECK_EQ(float_buf_b[0], ((float*)buf.raw_ptr())[0]);
allocator::free(buf);
};
array a = ones(shape, float32);
array b = array(buf_b, shape, float32, deleter);
eval(a + b);
}

1192
tests/autograd_tests.cpp Normal file

File diff suppressed because it is too large Load Diff

33
tests/device_tests.cpp Normal file
View File

@@ -0,0 +1,33 @@
#include "doctest/doctest.h"
#include <cstdlib>
#include "mlx/mlx.h"
using namespace mlx::core;
TEST_CASE("test device placement") {
auto device = default_device();
Device d = metal::is_available() ? Device::gpu : Device::cpu;
if (std::getenv("DEVICE") == nullptr) {
CHECK_EQ(device, d);
}
array x(1.0f);
array y(1.0f);
auto z = add(x, y, default_device());
if (metal::is_available()) {
z = add(x, y, Device::gpu);
z = add(x, y, Device(Device::gpu, 0));
} else {
CHECK_THROWS_AS(set_default_device(Device::gpu), std::invalid_argument);
CHECK_THROWS_AS(add(x, y, Device::gpu), std::invalid_argument);
}
// Set the default device to the CPU
set_default_device(Device::cpu);
CHECK_EQ(default_device(), Device::cpu);
// Revert
set_default_device(device);
}

97
tests/eval_tests.cpp Normal file
View File

@@ -0,0 +1,97 @@
#include "doctest/doctest.h"
#include "mlx/mlx.h"
using namespace mlx::core;
TEST_CASE("test eval") {
{
array x(1.0);
array y(1);
array z(true);
eval({x, y, z});
CHECK_EQ(x.item<float>(), 1.0);
}
{
array x(1.0);
array y = ones({2, 2});
array z(true);
eval({x, y, z});
CHECK(array_equal(y, array({1.0, 1.0, 1.0, 1.0}, {2, 2})).item<bool>());
}
}
TEST_CASE("test eval multiple") {
auto x = ones({10, 10});
auto y = ones({10, 10});
eval({x, y});
CHECK(array_equal(x, y).item<bool>());
auto a = x + y;
auto b = x - y;
eval({a, b});
CHECK(array_equal(a, full({10, 10}, 2.0f)).item<bool>());
CHECK(array_equal(b, full({10, 10}, 0.0f)).item<bool>());
x = ones({10, 10});
y = ones({10, 10});
eval(x, y);
CHECK(array_equal(x, y).item<bool>());
a = x + y;
b = x - y;
eval(a, b);
CHECK(array_equal(a, full({10, 10}, 2.0f)).item<bool>());
CHECK(array_equal(b, full({10, 10}, 0.0f)).item<bool>());
}
TEST_CASE("test eval with tracer") {
auto x = array(1);
x.set_tracer(true);
// Ok, x is not a node
eval(x);
x = ones({2, 3});
x.set_tracer(true);
CHECK_THROWS(eval(x));
// Ok retain_graph=true
eval({x}, true);
// Make sure all arguments are checked
auto y = ones({2, 3});
CHECK_THROWS(eval(x, y));
}
TEST_CASE("test eval graph retention") {
auto x = array(1);
auto y = array(2);
auto z = x + y;
eval({z}, true);
CHECK(z.has_primitive());
CHECK(z.is_evaled());
CHECK_EQ(z.item<int>(true), 3);
CHECK(z.has_primitive());
CHECK(z.is_evaled());
CHECK_EQ(z.item<int>(), 3);
CHECK(!z.has_primitive());
CHECK(z.is_evaled());
z = x + y;
auto a = z + x;
auto b = a + y;
eval({b}, true);
CHECK(z.has_primitive());
CHECK(z.is_evaled());
CHECK(a.has_primitive());
CHECK(a.is_evaled());
eval({b}, false);
CHECK(!z.has_primitive());
CHECK(z.is_evaled());
CHECK(!a.has_primitive());
CHECK(a.is_evaled());
}

81
tests/load_tests.cpp Normal file
View File

@@ -0,0 +1,81 @@
#include <filesystem>
#include <stdexcept>
#include <vector>
#include "doctest/doctest.h"
#include "mlx/mlx.h"
using namespace mlx::core;
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name);
}
TEST_CASE("test single array serialization") {
// Basic test
{
auto a = random::uniform(-5.f, 5.f, {2, 5, 12}, float32);
std::string file_path = get_temp_file("test_arr.npy");
save(file_path, a);
auto b = load(file_path);
CHECK_EQ(a.dtype(), b.dtype());
CHECK_EQ(a.shape(), b.shape());
CHECK(array_equal(a, b).item<bool>());
}
// Other shapes
{
auto a = random::uniform(
-5.f,
5.f,
{
1,
},
float32);
std::string file_path = get_temp_file("test_arr_0.npy");
save(file_path, a);
auto b = load(file_path);
CHECK_EQ(a.dtype(), b.dtype());
CHECK_EQ(a.shape(), b.shape());
CHECK(array_equal(a, b).item<bool>());
}
{
auto a = random::uniform(
-5.f,
5.f,
{
46,
},
float32);
std::string file_path = get_temp_file("test_arr_1.npy");
save(file_path, a);
auto b = load(file_path);
CHECK_EQ(a.dtype(), b.dtype());
CHECK_EQ(a.shape(), b.shape());
CHECK(array_equal(a, b).item<bool>());
}
{
auto a = random::uniform(-5.f, 5.f, {5, 2, 1, 3, 4}, float32);
std::string file_path = get_temp_file("test_arr_2.npy");
save(file_path, a);
auto b = load(file_path);
CHECK_EQ(a.dtype(), b.dtype());
CHECK_EQ(a.shape(), b.shape());
CHECK(array_equal(a, b).item<bool>());
}
}

119
tests/scheduler_tests.cpp Normal file
View File

@@ -0,0 +1,119 @@
#include "doctest/doctest.h"
#include "mlx/mlx.h"
#include "mlx/scheduler.h"
using namespace mlx::core;
TEST_CASE("test stream management") {
auto s1 = default_stream(default_device());
CHECK_EQ(s1.device, default_device());
auto s2 = new_stream(default_device());
CHECK_EQ(s2.device, default_device());
CHECK_NE(s1, s2);
// Check that default streams have the correct devices
if (metal::is_available()) {
auto s_gpu = default_stream(Device::gpu);
CHECK_EQ(s_gpu.device, Device::gpu);
} else {
CHECK_THROWS_AS(default_stream(Device::gpu), std::invalid_argument);
}
auto s_cpu = default_stream(Device::cpu);
CHECK_EQ(s_cpu.device, Device::cpu);
s_cpu = new_stream(Device::cpu);
CHECK_EQ(s_cpu.device, Device::cpu);
if (metal::is_available()) {
auto s_gpu = new_stream(Device::gpu);
CHECK_EQ(s_gpu.device, Device::gpu);
} else {
CHECK_THROWS_AS(new_stream(Device::gpu), std::invalid_argument);
}
}
TEST_CASE("test asynchronous launch") {
auto s1 = default_stream(default_device());
auto s2 = new_stream(default_device());
// Make sure streams execute asynchronously
int x = 1;
auto p1 = std::make_shared<std::promise<void>>();
auto p2 = std::make_shared<std::promise<void>>();
auto f1 = p1->get_future().share();
auto f2 = p2->get_future().share();
auto fn1 = [&x, p = std::move(p1)]() {
x++;
p->set_value();
};
auto fn2 = [&x, p = std::move(p2), f = std::move(f1)]() {
f.wait();
x *= 5;
p->set_value();
};
// fn2 is launched first and is waiting on fn1 but since
// they are on different streams there is no deadlock.
scheduler::enqueue(s2, std::move(fn2));
scheduler::enqueue(s1, std::move(fn1));
f2.wait();
CHECK_EQ(x, 10);
}
TEST_CASE("test stream placement") {
auto s1 = default_stream(default_device());
auto s2 = new_stream(default_device());
{
// Wait on stream 1
auto p = std::make_shared<std::promise<void>>();
auto f = p->get_future().share();
scheduler::enqueue(s1, [f = std::move(f)]() { f.wait(); });
// Do some work on stream 2
auto x = zeros({100}, float32, s2);
auto y = ones({100}, float32, s2);
auto z = add(x, y, s2);
eval(z);
p->set_value();
}
{
// Wait on stream 1
auto p = std::make_shared<std::promise<void>>();
auto f = p->get_future().share();
scheduler::enqueue(s1, [f = std::move(f)]() { f.wait(); });
// Do some work on stream 2
auto fn = [&s2](array a) { return add(a, add(a, a, s2), s2); };
auto x = zeros({100}, s2);
// The whole vjp computation should happen
// on the second stream otherwise this will hang.
auto [out, dout] = vjp(fn, x, ones({100}, s2));
// The whole jvp computation should happen on the
// second stream.
std::tie(out, dout) = jvp(fn, x, ones({100}, s2));
eval(out, dout);
p->set_value();
}
}
TEST_CASE("test scheduler races") {
auto x = zeros({1});
auto y = zeros({100});
eval(x, y);
auto a = exp(x);
eval(a);
a = exp(x);
for (int i = 0; i < 10000; ++i) {
y = exp(y);
}
eval(a, y);
}

26
tests/utils_tests.cpp Normal file
View File

@@ -0,0 +1,26 @@
#include "doctest/doctest.h"
#include "mlx/mlx.h"
using namespace mlx::core;
TEST_CASE("test type promotion") {
for (auto t : {bool_, uint32, int32, int64, float32}) {
auto a = array(0, t);
CHECK_EQ(result_type({a}), t);
std::vector<array> arrs = {array(0, t), array(0, t)};
CHECK_EQ(result_type(arrs), t);
}
{
std::vector<array> arrs = {array(false), array(0, int32)};
CHECK_EQ(result_type(arrs), int32);
}
{
std::vector<array> arrs = {array(0, int32), array(false), array(0.0f)};
CHECK_EQ(result_type(arrs), float32);
}
}