mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-21 20:46:46 +08:00
lint fix
This commit is contained in:
parent
15307c5367
commit
e7114f4b91
@ -372,12 +372,13 @@ def log_cosh_loss(
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def focal_loss(
|
||||
inputs: mx.array,
|
||||
targets: mx.array,
|
||||
alpha: float = 0.25,
|
||||
gamma: float = 2.0,
|
||||
reduction: str = "none"
|
||||
reduction: str = "none",
|
||||
) -> mx.array:
|
||||
r"""
|
||||
Computes the Focal Loss between inputs and targets, which is designed to address
|
||||
@ -400,26 +401,24 @@ def focal_loss(
|
||||
"""
|
||||
if gamma < 0:
|
||||
raise ValueError(f"Focal loss gamma must be non-negative, got {gamma}.")
|
||||
|
||||
|
||||
# Calculating the cross-entropy loss
|
||||
ce_loss = mx.logaddexp(0.0, inputs) - targets * inputs
|
||||
|
||||
|
||||
# Calculating the probability
|
||||
pt = mx.exp(-ce_loss)
|
||||
|
||||
|
||||
# Calculating Focal Loss
|
||||
focal_loss = -alpha * ((1 - pt) ** gamma) * ce_loss
|
||||
|
||||
|
||||
return _reduce(focal_loss, reduction)
|
||||
|
||||
|
||||
def dice_loss(
|
||||
inputs: mx.array,
|
||||
targets: mx.array,
|
||||
epsilon: float = 1e-6,
|
||||
reduction: str = "none"
|
||||
inputs: mx.array, targets: mx.array, epsilon: float = 1e-6, reduction: str = "none"
|
||||
) -> mx.array:
|
||||
r"""
|
||||
Computes the Dice Loss, which is a measure of overlap between two samples.
|
||||
Computes the Dice Loss, which is a measure of overlap between two samples.
|
||||
This loss is commonly used for binary segmentation tasks.
|
||||
|
||||
.. math::
|
||||
@ -438,19 +437,17 @@ def dice_loss(
|
||||
"""
|
||||
intersection = mx.sum(inputs * targets, axis=1)
|
||||
cardinality = mx.sum(inputs + targets, axis=1)
|
||||
dice_score = (2. * intersection + epsilon) / (cardinality + epsilon)
|
||||
dice_score = (2.0 * intersection + epsilon) / (cardinality + epsilon)
|
||||
loss = 1 - dice_score
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def iou_loss(
|
||||
inputs: mx.array,
|
||||
targets: mx.array,
|
||||
epsilon: float = 1e-6,
|
||||
reduction: str = "none"
|
||||
inputs: mx.array, targets: mx.array, epsilon: float = 1e-6, reduction: str = "none"
|
||||
) -> mx.array:
|
||||
r"""
|
||||
Computes the Intersection over Union (IoU) Loss, which is a measure of the
|
||||
Computes the Intersection over Union (IoU) Loss, which is a measure of the
|
||||
overlap between two sets, typically used in segmentation tasks.
|
||||
|
||||
.. math::
|
||||
@ -474,13 +471,14 @@ def iou_loss(
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def contrastive_loss(
|
||||
anchors: mx.array,
|
||||
positives: mx.array,
|
||||
negatives: mx.array,
|
||||
margin: float = 1.0,
|
||||
p: int = 2,
|
||||
reduction: str = "none"
|
||||
reduction: str = "none",
|
||||
) -> mx.array:
|
||||
r"""
|
||||
Computes the Contrastive Loss for a set of anchor, positive, and negative samples.
|
||||
@ -504,16 +502,17 @@ def contrastive_loss(
|
||||
positive_distance = mx.sqrt(mx.power(anchors - positives, p).sum(axis=1))
|
||||
negative_distance = mx.sqrt(mx.power(anchors - negatives, p).sum(axis=1))
|
||||
loss = mx.maximum(positive_distance - negative_distance + margin, 0)
|
||||
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
||||
|
||||
def tversky_loss(
|
||||
inputs: mx.array,
|
||||
targets: mx.array,
|
||||
alpha: float = 0.5,
|
||||
beta: float = 0.5,
|
||||
epsilon: float = 1e-6,
|
||||
reduction: str = "none"
|
||||
reduction: str = "none",
|
||||
) -> mx.array:
|
||||
r"""
|
||||
Computes the Tversky Loss, a generalization of the Dice Loss, allowing more control over false
|
||||
@ -538,7 +537,9 @@ def tversky_loss(
|
||||
intersection = mx.sum(inputs * targets, axis=1)
|
||||
false_negatives = mx.sum(inputs * (1 - targets), axis=1)
|
||||
false_positives = mx.sum((1 - inputs) * targets, axis=1)
|
||||
tversky_index = (intersection + epsilon) / (intersection + alpha * false_negatives + beta * false_positives + epsilon)
|
||||
tversky_index = (intersection + epsilon) / (
|
||||
intersection + alpha * false_negatives + beta * false_positives + epsilon
|
||||
)
|
||||
loss = 1 - tversky_index
|
||||
|
||||
return _reduce(loss, reduction)
|
||||
|
@ -791,7 +791,7 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
targets = mx.zeros((2, 4))
|
||||
loss = nn.losses.log_cosh_loss(inputs, targets, reduction="mean")
|
||||
self.assertAlmostEqual(loss.item(), 0.433781, places=6)
|
||||
|
||||
|
||||
def test_focal_loss(self):
|
||||
inputs = mx.array([[2.0, -1.0, 3.0, 0.1], [-1.0, 2.0, -0.5, 0.2]])
|
||||
targets = mx.array([[1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 1.0]])
|
||||
@ -801,16 +801,18 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
pt = mx.exp(-ce_loss)
|
||||
expected_loss = -alpha * ((1 - pt) ** gamma) * ce_loss
|
||||
expected_loss = mx.mean(expected_loss)
|
||||
loss = nn.losses.focal_loss(inputs, targets, alpha=alpha, gamma=gamma, reduction="mean")
|
||||
loss = nn.losses.focal_loss(
|
||||
inputs, targets, alpha=alpha, gamma=gamma, reduction="mean"
|
||||
)
|
||||
self.assertAlmostEqual(loss.item(), expected_loss.item(), places=6)
|
||||
|
||||
|
||||
def test_dice_loss(self):
|
||||
inputs = mx.array([[1, 0, 1, 1], [0, 1, 1, 0]])
|
||||
targets = mx.array([[1, 1, 1, 0], [0, 0, 1, 1]])
|
||||
epsilon = 1e-6
|
||||
intersection = mx.sum(inputs * targets, axis=1)
|
||||
cardinality = mx.sum(inputs + targets, axis=1)
|
||||
dice_score = (2. * intersection + epsilon) / (cardinality + epsilon)
|
||||
dice_score = (2.0 * intersection + epsilon) / (cardinality + epsilon)
|
||||
expected_loss = 1 - dice_score
|
||||
expected_loss = mx.mean(expected_loss)
|
||||
loss = nn.losses.dice_loss(inputs, targets, epsilon=epsilon, reduction="mean")
|
||||
@ -827,7 +829,7 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
expected_loss = mx.mean(expected_loss)
|
||||
loss = nn.losses.iou_loss(inputs, targets, epsilon=epsilon, reduction="mean")
|
||||
self.assertAlmostEqual(loss.item(), expected_loss.item(), places=6)
|
||||
|
||||
|
||||
def test_contrastive_loss(self):
|
||||
anchors = mx.array([[1, 2], [3, 4]])
|
||||
positives = mx.array([[1, 3], [2, 4]])
|
||||
@ -838,9 +840,11 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
negative_distance = mx.sqrt(mx.power(anchors - negatives, p).sum(axis=1))
|
||||
expected_loss = mx.maximum(positive_distance - negative_distance + margin, 0)
|
||||
expected_loss = mx.mean(expected_loss)
|
||||
loss = nn.losses.contrastive_loss(anchors, positives, negatives, margin=margin, p=p, reduction="mean")
|
||||
loss = nn.losses.contrastive_loss(
|
||||
anchors, positives, negatives, margin=margin, p=p, reduction="mean"
|
||||
)
|
||||
self.assertAlmostEqual(loss.item(), expected_loss.item(), places=6)
|
||||
|
||||
|
||||
def test_tversky_loss(self):
|
||||
inputs = mx.array([[1, 0, 1, 1], [0, 1, 1, 0]])
|
||||
targets = mx.array([[1, 1, 1, 0], [0, 0, 1, 1]])
|
||||
@ -850,10 +854,14 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
intersection = mx.sum(inputs * targets, axis=1)
|
||||
false_negatives = mx.sum(inputs * (1 - targets), axis=1)
|
||||
false_positives = mx.sum((1 - inputs) * targets, axis=1)
|
||||
tversky_index = (intersection + epsilon) / (intersection + alpha * false_negatives + beta * false_positives + epsilon)
|
||||
tversky_index = (intersection + epsilon) / (
|
||||
intersection + alpha * false_negatives + beta * false_positives + epsilon
|
||||
)
|
||||
expected_loss = 1 - tversky_index
|
||||
expected_loss = mx.mean(expected_loss)
|
||||
loss = nn.losses.tversky_loss(inputs, targets, alpha=alpha, beta=beta, epsilon=epsilon, reduction="mean")
|
||||
loss = nn.losses.tversky_loss(
|
||||
inputs, targets, alpha=alpha, beta=beta, epsilon=epsilon, reduction="mean"
|
||||
)
|
||||
self.assertAlmostEqual(loss.item(), expected_loss.item(), places=6)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user