mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 07:58:14 +08:00 
			
		
		
		
	Add sdpa file
This commit is contained in:
		
							
								
								
									
										464
									
								
								mlx/backend/cuda/scaled_dot_product_attention.cu
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										464
									
								
								mlx/backend/cuda/scaled_dot_product_attention.cu
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,464 @@ | ||||
| // Copyright © 2025 Apple Inc. | ||||
|  | ||||
| #include "mlx/backend/cuda/device.h" | ||||
| #include "mlx/backend/cuda/device/config.h" | ||||
| #include "mlx/backend/cuda/kernel_utils.cuh" | ||||
| #include "mlx/backend/cuda/lru_cache.h" | ||||
| #include "mlx/backend/gpu/copy.h" | ||||
| #include "mlx/dtype_utils.h" | ||||
| #include "mlx/fast_primitives.h" | ||||
|  | ||||
| // cudnn_frontend.h redefines this macro. | ||||
| #undef CHECK_CUDA_ERROR | ||||
|  | ||||
| #include <cudnn_frontend.h> | ||||
| #include <fmt/format.h> | ||||
| #include <nvtx3/nvtx3.hpp> | ||||
|  | ||||
| namespace fe = cudnn_frontend; | ||||
|  | ||||
| namespace mlx::core { | ||||
|  | ||||
| namespace cu {} // namespace cu | ||||
|  | ||||
| namespace { | ||||
|  | ||||
| struct SDPACacheKey { | ||||
|   int device_id; | ||||
|   fe::DataType_t cudnn_type; | ||||
|  | ||||
|   int B; | ||||
|   int H; | ||||
|   int D; | ||||
|  | ||||
|   int qL; | ||||
|   int kL; | ||||
|  | ||||
|   int gqa_factor; | ||||
|   float scale; | ||||
|  | ||||
|   int64_t Q_strides[3]; | ||||
|   int64_t K_strides[3]; | ||||
|   int64_t V_strides[3]; | ||||
|   int64_t O_strides[3]; | ||||
|  | ||||
|   bool generate_stats; | ||||
|   bool causal_mask; | ||||
| }; | ||||
|  | ||||
| auto& sdpa_cache() { | ||||
|   static LRUBytesKeyCache<SDPACacheKey, std::shared_ptr<fe::graph::Graph>> | ||||
|       cache( | ||||
|           /* capacity */ 128); | ||||
|   return cache; | ||||
| } | ||||
|  | ||||
| #define Q_UID 1 | ||||
| #define K_UID 2 | ||||
| #define V_UID 3 | ||||
| #define O_UID 4 | ||||
| #define STATS_UID 5 | ||||
|  | ||||
| std::shared_ptr<fe::graph::Graph> get_sdpa_forward_graph( | ||||
|     cu::CommandEncoder& encoder, | ||||
|     const SDPACacheKey& cache_key) { | ||||
|   // Check if graph has already been fully built | ||||
|   if (auto it = sdpa_cache().find(cache_key); it != sdpa_cache().end()) { | ||||
|     return it->second; | ||||
|   } | ||||
|  | ||||
|   // Set up new graph | ||||
|   auto graph = std::make_shared<fe::graph::Graph>(); | ||||
|  | ||||
|   graph->set_io_data_type(cache_key.cudnn_type) | ||||
|       .set_intermediate_data_type(fe::DataType_t::FLOAT) | ||||
|       .set_compute_data_type(fe::DataType_t::FLOAT); | ||||
|  | ||||
|   auto Q = graph->tensor( | ||||
|       fe::graph::Tensor_attributes() | ||||
|           .set_name("Q") | ||||
|           .set_uid(Q_UID) | ||||
|           .set_dim({cache_key.B, cache_key.H, cache_key.qL, cache_key.D}) | ||||
|           .set_stride( | ||||
|               {cache_key.Q_strides[0], | ||||
|                cache_key.Q_strides[1], | ||||
|                cache_key.Q_strides[2], | ||||
|                1})); | ||||
|  | ||||
|   int h_kv = cache_key.H / cache_key.gqa_factor; | ||||
|   auto K = | ||||
|       graph->tensor(fe::graph::Tensor_attributes() | ||||
|                         .set_name("K") | ||||
|                         .set_uid(K_UID) | ||||
|                         .set_dim({cache_key.B, h_kv, cache_key.kL, cache_key.D}) | ||||
|                         .set_stride( | ||||
|                             {cache_key.K_strides[0], | ||||
|                              cache_key.K_strides[1], | ||||
|                              cache_key.V_strides[2], | ||||
|                              1})); | ||||
|  | ||||
|   auto V = | ||||
|       graph->tensor(fe::graph::Tensor_attributes() | ||||
|                         .set_name("V") | ||||
|                         .set_uid(V_UID) | ||||
|                         .set_dim({cache_key.B, h_kv, cache_key.kL, cache_key.D}) | ||||
|                         .set_stride( | ||||
|                             {cache_key.V_strides[0], | ||||
|                              cache_key.V_strides[1], | ||||
|                              cache_key.V_strides[2], | ||||
|                              1})); | ||||
|  | ||||
|   auto sdpa_options = fe::graph::SDPA_attributes() | ||||
|                           .set_name("flash_attention") | ||||
|                           .set_is_inference(!cache_key.generate_stats) | ||||
|                           .set_attn_scale(cache_key.scale); | ||||
|  | ||||
|   if (cache_key.causal_mask && cache_key.qL > 1) { | ||||
|     sdpa_options.set_diagonal_alignment(fe::DiagonalAlignment_t::TOP_LEFT) | ||||
|         .set_diagonal_band_right_bound(0); | ||||
|   } | ||||
|  | ||||
|   auto [O, Stats] = graph->sdpa(Q, K, V, sdpa_options); | ||||
|  | ||||
|   O->set_output(true) | ||||
|       .set_uid(O_UID) | ||||
|       .set_dim({cache_key.B, cache_key.H, cache_key.qL, cache_key.D}) | ||||
|       .set_stride( | ||||
|           {cache_key.O_strides[0], | ||||
|            cache_key.O_strides[1], | ||||
|            cache_key.O_strides[2], | ||||
|            1}); | ||||
|  | ||||
|   if (cache_key.generate_stats) { | ||||
|     Stats->set_output(true) | ||||
|         .set_data_type(fe::DataType_t::FLOAT) | ||||
|         .set_uid(STATS_UID); | ||||
|   } | ||||
|  | ||||
|   // Build and Validate cudnn graph | ||||
|  | ||||
|   auto handle = encoder.device().cudnn_handle(); | ||||
|  | ||||
|   // cuDNN only supports native CUDA graphs for sdpa in 9.6 or above. | ||||
|   if (cudnnGetVersion() < 90600) { | ||||
|     auto build_status = graph->build(handle, {fe::HeurMode_t::A}); | ||||
|     if (!build_status.is_good()) { | ||||
|       throw std::runtime_error( | ||||
|           "Unable to build cudnn graph for attention." | ||||
|           " Failed with message: " + | ||||
|           build_status.get_message()); | ||||
|     } | ||||
|  | ||||
|   } else { | ||||
|     auto val_status = graph->validate(); | ||||
|     auto op_status = graph->build_operation_graph(handle); | ||||
|  | ||||
|     auto plan_stauts = | ||||
|         graph->create_execution_plans({cudnn_frontend::HeurMode_t::A}); | ||||
|     if (!plan_stauts.is_good()) { | ||||
|       throw std::runtime_error( | ||||
|           "Unable to create exec plan for cudnn attention." | ||||
|           " Failed with message: " + | ||||
|           plan_stauts.get_message()); | ||||
|     } | ||||
|  | ||||
|     graph->select_behavior_notes( | ||||
|         {cudnn_frontend::BehaviorNote_t::SUPPORTS_CUDA_GRAPH_NATIVE_API}); | ||||
|  | ||||
|     auto support_status = graph->check_support(handle); | ||||
|     if (!support_status.is_good()) { | ||||
|       throw std::runtime_error( | ||||
|           "No cuda graph support for cudnn attention." | ||||
|           " Failed with message: " + | ||||
|           support_status.get_message()); | ||||
|     } | ||||
|  | ||||
|     auto build_status = graph->build_plans(handle); | ||||
|     if (!build_status.is_good()) { | ||||
|       throw std::runtime_error( | ||||
|           "Unable to build cudnn graph for attention." | ||||
|           " Failed with message: " + | ||||
|           build_status.get_message()); | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   auto [it, _] = sdpa_cache().emplace(cache_key, graph); | ||||
|  | ||||
|   return it->second; | ||||
| } | ||||
|  | ||||
| inline fe::DataType_t dtype_to_cudnn_type(Dtype dtype) { | ||||
|   switch (dtype) { | ||||
|     case int8: | ||||
|       return fe::DataType_t::INT8; | ||||
|     case int32: | ||||
|       return fe::DataType_t::INT32; | ||||
|     case uint8: | ||||
|       return fe::DataType_t::UINT8; | ||||
|     case float16: | ||||
|       return fe::DataType_t::HALF; | ||||
|     case bfloat16: | ||||
|       return fe::DataType_t::BFLOAT16; | ||||
|     case float32: | ||||
|       return fe::DataType_t::FLOAT; | ||||
|     case float64: | ||||
|       return fe::DataType_t::DOUBLE; | ||||
|     default: | ||||
|       throw std::runtime_error(fmt::format( | ||||
|           "Unsupported dtype in SDPA: {}.", dtype_to_string(dtype))); | ||||
|   } | ||||
| } | ||||
|  | ||||
| void sdpa_cudnn( | ||||
|     const Stream& s, | ||||
|     cu::CommandEncoder& encoder, | ||||
|     const array& q, | ||||
|     const array& k, | ||||
|     const array& v, | ||||
|     const float scale, | ||||
|     array& o, | ||||
|     bool do_causal_ = false) { | ||||
|   encoder.set_input_array(q); | ||||
|   encoder.set_input_array(k); | ||||
|   encoder.set_input_array(v); | ||||
|   encoder.set_output_array(o); | ||||
|  | ||||
|   auto cudnn_type = dtype_to_cudnn_type(q.dtype()); | ||||
|  | ||||
|   int B = q.shape(0); | ||||
|   int H = q.shape(1); | ||||
|   int D = q.shape(3); | ||||
|   int gqa_factor = q.shape(1) / k.shape(1); | ||||
|  | ||||
|   int qL = q.shape(2); | ||||
|   int kL = k.shape(2); | ||||
|  | ||||
|   SDPACacheKey cache_key{ | ||||
|       /* int device_id = */ encoder.device().cuda_device(), | ||||
|       /* fe::DataType_t cudnn_type = */ cudnn_type, | ||||
|  | ||||
|       /* int B = */ B, | ||||
|       /* int H = */ H, | ||||
|       /* int D = */ D, | ||||
|  | ||||
|       /* int qL = */ qL, | ||||
|       /* int kL = */ kL, | ||||
|  | ||||
|       /* int gqa_factor = */ gqa_factor, | ||||
|       /* float scale = */ scale, | ||||
|  | ||||
|       /* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)}, | ||||
|       /* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)}, | ||||
|       /* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)}, | ||||
|       /* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)}, | ||||
|  | ||||
|       /* bool generate_stats = */ false, | ||||
|       /* bool causal_mask = */ do_causal_}; | ||||
|  | ||||
|   auto graph = get_sdpa_forward_graph(encoder, cache_key); | ||||
|  | ||||
|   int64_t workspace_size = 0; | ||||
|   auto workspace_status = graph->get_workspace_size(workspace_size); | ||||
|   if (!workspace_status.is_good()) { | ||||
|     throw std::runtime_error("Unable to get workspace for cudnn attention."); | ||||
|   } | ||||
|  | ||||
|   array workspace( | ||||
|       allocator::malloc(workspace_size), {int(workspace_size)}, uint8); | ||||
|   auto workspace_ptr = workspace.data<void>(); | ||||
|  | ||||
|   std::unordered_map<int64_t, void*> variant_pack = { | ||||
|       {Q_UID, const_cast<void*>(q.data<void>())}, | ||||
|       {K_UID, const_cast<void*>(k.data<void>())}, | ||||
|       {V_UID, const_cast<void*>(v.data<void>())}, | ||||
|       {O_UID, o.data<void>()}}; | ||||
|  | ||||
|   auto handle = encoder.device().cudnn_handle(); | ||||
|   cudnnSetStream(handle, encoder.stream()); | ||||
|  | ||||
|   // cuDNN only supports native CUDA graphs for sdpa in 9.6 or above. | ||||
|   if (cudnnGetVersion() < 90600) { | ||||
|     auto capture = encoder.capture_context(); | ||||
|     auto exec_status = graph->execute(handle, variant_pack, workspace_ptr); | ||||
|  | ||||
|     if (!exec_status.is_good()) { | ||||
|       capture.discard = true; | ||||
|       throw std::runtime_error( | ||||
|           "Unable to execute cudnn attention." | ||||
|           " Failed with message: " + | ||||
|           exec_status.get_message()); | ||||
|     } | ||||
|   } else { | ||||
|     cudaGraph_t cu_graph; | ||||
|     cudaGraphCreate(&cu_graph, 0); | ||||
|  | ||||
|     std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer( | ||||
|         &cu_graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); }); | ||||
|  | ||||
|     auto cu_graph_status = graph->populate_cuda_graph( | ||||
|         handle, variant_pack, workspace_ptr, cu_graph); | ||||
|  | ||||
|     if (!cu_graph_status.is_good()) { | ||||
|       throw std::runtime_error( | ||||
|           "Unable to add cuda graph for cudnn attention." | ||||
|           " Failed with message: " + | ||||
|           cu_graph_status.get_message()); | ||||
|     } | ||||
|  | ||||
|     encoder.add_graph_node(cu_graph); | ||||
|   } | ||||
|  | ||||
|   encoder.add_temporary(workspace); | ||||
| } | ||||
|  | ||||
| } // namespace | ||||
|  | ||||
| namespace fast { | ||||
|  | ||||
| bool ScaledDotProductAttention::use_fallback( | ||||
|     const array& q, | ||||
|     const array& k, | ||||
|     const array& v, | ||||
|     bool has_mask, | ||||
|     bool has_arr_mask, | ||||
|     bool do_causal, | ||||
|     Stream s) { | ||||
|   if (s.device == Device::cpu) { | ||||
|     return true; | ||||
|   } | ||||
|  | ||||
|   auto& cu_device = cu::device(s.device); | ||||
|   if (cu_device.compute_capability_major() < 8) { | ||||
|     return true; | ||||
|   } | ||||
|  | ||||
|   const int value_head_dim = v.shape(-1); | ||||
|   const int query_head_dim = q.shape(-1); | ||||
|   const int query_sequence_length = q.shape(2); | ||||
|   const int key_sequence_length = k.shape(2); | ||||
|  | ||||
|   const bool sdpa_supported_head_dim = query_head_dim == value_head_dim && | ||||
|       (query_head_dim == 64 || query_head_dim == 96 || query_head_dim == 128); | ||||
|  | ||||
|   const bool supported_dtype = q.dtype() == float16 || q.dtype() == bfloat16; | ||||
|  | ||||
|   const bool supported_config = supported_dtype && sdpa_supported_head_dim; | ||||
|  | ||||
|   return has_arr_mask || !supported_config; | ||||
| } | ||||
|  | ||||
| void ScaledDotProductAttention::eval_gpu( | ||||
|     const std::vector<array>& inputs, | ||||
|     array& out) { | ||||
|   nvtx3::scoped_range r("ScaledDotProductAttention::eval_gpu"); | ||||
|  | ||||
|   auto& s = stream(); | ||||
|   auto& encoder = cu::get_command_encoder(s); | ||||
|  | ||||
|   auto& q_pre = inputs[0]; | ||||
|   auto& k_pre = inputs[1]; | ||||
|   auto& v_pre = inputs[2]; | ||||
|   auto& o = out; | ||||
|  | ||||
|   std::vector<array> copies; | ||||
|  | ||||
|   // Define some copy functions to ensure the layout of the inputs is as | ||||
|   // expected. | ||||
|   copies.reserve(3); | ||||
|   auto copy_unless = [&copies, &s]( | ||||
|                          auto predicate, const array& arr) -> const array& { | ||||
|     if (!predicate(arr)) { | ||||
|       array arr_copy = contiguous_copy_gpu(arr, s); | ||||
|       copies.push_back(std::move(arr_copy)); | ||||
|       return copies.back(); | ||||
|     } else { | ||||
|       return arr; | ||||
|     } | ||||
|   }; | ||||
|  | ||||
|   auto is_matrix_contiguous = [](const array& arr) { | ||||
|     return arr.strides(-1) == 1; | ||||
|   }; | ||||
|  | ||||
|   // We are in vector mode ie single query | ||||
|   if (q_pre.shape(2) <= 1) { | ||||
|     auto q_copy_unless = [](const array& arr) { | ||||
|       if (arr.flags().row_contiguous) { | ||||
|         return true; | ||||
|       } | ||||
|       auto& strides = arr.strides(); | ||||
|       auto& shape = arr.shape(); | ||||
|       if (shape[0] == 1 || shape[1] == 1) { | ||||
|         // If either the batch or head dimension is a singleton, the other can | ||||
|         // be transposed with the sequence dimension | ||||
|         auto bidx = shape[0] == 1 ? 1 : 0; | ||||
|         return (strides[3] == 1) && (strides[2] == shape[3] * shape[bidx]) && | ||||
|             (strides[bidx] == shape[3]); | ||||
|       } | ||||
|       return false; | ||||
|     }; | ||||
|  | ||||
|     auto kv_copy_unless = [](const array& arr) { | ||||
|       // keys and values should be copied if: | ||||
|       // - the last dimension is not contiguous | ||||
|       // - the batch and head dim are not contiguous | ||||
|       auto& strides = arr.strides(); | ||||
|       auto& shape = arr.shape(); | ||||
|       if (strides.back() != 1) { | ||||
|         return false; | ||||
|       } | ||||
|       if (shape[0] == 1 || shape[1] == 1) { | ||||
|         return true; | ||||
|       } | ||||
|       return (strides[0] == strides[1] * shape[1]); | ||||
|     }; | ||||
|  | ||||
|     const auto& q = copy_unless(q_copy_unless, q_pre); | ||||
|     const auto& k = copy_unless(kv_copy_unless, k_pre); | ||||
|     const auto& v = copy_unless(kv_copy_unless, v_pre); | ||||
|  | ||||
|     for (const auto& cp : copies) { | ||||
|       encoder.add_temporary(cp); | ||||
|     } | ||||
|  | ||||
|     // Donate the query if possible | ||||
|     if (q.is_donatable() && q.flags().row_contiguous && q.size() == o.size()) { | ||||
|       o.copy_shared_buffer(q); | ||||
|     } else { | ||||
|       o.set_data(allocator::malloc(o.nbytes())); | ||||
|     } | ||||
|  | ||||
|     return sdpa_cudnn(s, encoder, q, k, v, scale_, o, do_causal_); | ||||
|   } | ||||
|  | ||||
|   // Full attention mode | ||||
|   else { | ||||
|     const auto& q = copy_unless(is_matrix_contiguous, q_pre); | ||||
|     const auto& k = copy_unless(is_matrix_contiguous, k_pre); | ||||
|     const auto& v = copy_unless(is_matrix_contiguous, v_pre); | ||||
|  | ||||
|     int64_t str_oD = 1; | ||||
|     int64_t str_oH = o.shape(3); | ||||
|     int64_t str_oL = o.shape(1) * str_oH; | ||||
|     int64_t str_oB = o.shape(2) * str_oL; | ||||
|     size_t data_size = o.shape(0) * str_oB; | ||||
|  | ||||
|     array::Flags flags{ | ||||
|         /* bool contiguous = */ 1, | ||||
|         /* bool row_contiguous = */ 0, | ||||
|         /* bool col_contiguous = */ 0, | ||||
|     }; | ||||
|  | ||||
|     o.set_data( | ||||
|         allocator::malloc(o.nbytes()), | ||||
|         data_size, | ||||
|         {str_oB, str_oH, str_oL, str_oD}, | ||||
|         flags); | ||||
|  | ||||
|     return sdpa_cudnn(s, encoder, q, k, v, scale_, o, do_causal_); | ||||
|   } | ||||
| } | ||||
|  | ||||
| } // namespace fast | ||||
|  | ||||
| } // namespace mlx::core | ||||
		Reference in New Issue
	
	Block a user
	 Jagrit Digani
					Jagrit Digani