Block sparse qmm (#1124)

This commit is contained in:
Angelos Katharopoulos 2024-05-16 15:24:14 -07:00 committed by GitHub
parent 1873ffda01
commit e78a6518fa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 1724 additions and 164 deletions

View File

@ -33,6 +33,7 @@ DEFAULT(ArgSort)
DEFAULT(AsStrided)
DEFAULT(BlockMaskedMM)
DEFAULT(BlockSparseMM)
DEFAULT(BlockSparseQMM)
DEFAULT(Broadcast)
DEFAULT(Ceil)
DEFAULT(Concatenate)

View File

@ -44,6 +44,7 @@ DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT(BlockMaskedMM)
DEFAULT(BlockSparseMM)
DEFAULT(BlockSparseQMM)
DEFAULT_MULTI(DivMod)
DEFAULT(Ceil)
DEFAULT(Concatenate)

View File

@ -192,7 +192,7 @@ void _qmm_dispatch_typed(
}
void _qmm_dispatch(
array out,
array& out,
const array& x,
const array& w,
const array& scales,
@ -253,6 +253,81 @@ void _qmm_dispatch(
}
}
void _bs_qmm_dispatch(
array& out,
const array& x,
const array& w,
const array& scales,
const array& biases,
const array& lhs_indices,
const array& rhs_indices,
int bits,
int group_size,
bool transposed_w) {
int K = x.shape(-1);
int M = x.shape(-2);
int N = out.shape(-1);
int w_els = w.shape(-1) * w.shape(-2);
int g_els = scales.shape(-1) * scales.shape(-2);
const uint32_t* lhs_indices_data = lhs_indices.data<uint32_t>();
const uint32_t* rhs_indices_data = rhs_indices.data<uint32_t>();
for (int i = 0; i < lhs_indices.size(); i++) {
int x_idx = lhs_indices_data[elem_to_loc(i, lhs_indices)];
int w_idx = rhs_indices_data[elem_to_loc(i, rhs_indices)];
switch (x.dtype()) {
case float32:
_qmm_dispatch_typed<float>(
out.data<float>() + i * M * N,
x.data<float>() + elem_to_loc(x_idx * M * K, x),
w.data<uint32_t>() + elem_to_loc(w_idx * w_els, w),
scales.data<float>() + elem_to_loc(w_idx * g_els, scales),
biases.data<float>() + elem_to_loc(w_idx * g_els, biases),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
case float16:
_qmm_dispatch_typed<float16_t>(
out.data<float16_t>() + i * M * N,
x.data<float16_t>() + elem_to_loc(x_idx * M * K, x),
w.data<uint32_t>() + elem_to_loc(w_idx * w_els, w),
scales.data<float16_t>() + elem_to_loc(w_idx * g_els, scales),
biases.data<float16_t>() + elem_to_loc(w_idx * g_els, biases),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
case bfloat16:
_qmm_dispatch_typed<bfloat16_t>(
out.data<bfloat16_t>() + i * M * N,
x.data<bfloat16_t>() + elem_to_loc(x_idx * M * K, x),
w.data<uint32_t>() + elem_to_loc(w_idx * w_els, w),
scales.data<bfloat16_t>() + elem_to_loc(w_idx * g_els, scales),
biases.data<bfloat16_t>() + elem_to_loc(w_idx * g_els, biases),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
default:
throw std::invalid_argument(
"[quantized_matmul] only floating types are supported");
}
}
}
} // namespace
void QuantizedMatmul::eval(const std::vector<array>& inputs, array& out) {
@ -282,4 +357,45 @@ void QuantizedMatmul::eval(const std::vector<array>& inputs, array& out) {
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
}
void BlockSparseQMM::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 6);
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& biases_pre = inputs[3];
auto& lhs_indices = inputs[4];
auto& rhs_indices = inputs[5];
auto ensure_row_contiguous_last_dims = [](const array& arr) {
auto stride_0 = arr.strides()[arr.ndim() - 2];
auto stride_1 = arr.strides()[arr.ndim() - 1];
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
return arr;
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
return arr_copy;
}
};
auto x = ensure_row_contiguous_last_dims(x_pre);
auto w = ensure_row_contiguous_last_dims(w_pre);
auto scales = ensure_row_contiguous_last_dims(scales_pre);
auto biases = ensure_row_contiguous_last_dims(biases_pre);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
_bs_qmm_dispatch(
out,
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
group_size_,
bits_,
transpose_);
}
} // namespace mlx::core

View File

@ -378,14 +378,14 @@ struct QuantizedBlockLoader {
};
template <typename T, int group_size, int bits, int packs_per_thread>
[[kernel]] void qmv_fast(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
METAL_FUNC void qmv_fast_impl(
const device uint32_t* w,
const device T* scales,
const device T* biases,
const device T* x,
device T* y,
const constant int& in_vec_size,
const constant int& out_vec_size,
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
@ -404,13 +404,13 @@ template <typename T, int group_size, int bits, int packs_per_thread>
// Adjust positions
const int in_vec_size_w = in_vec_size / pack_factor;
const int in_vec_size_g = in_vec_size / group_size;
const int out_row = tid.y * (num_simdgroups * results_per_simdgroup) +
const int out_row = tid.x * (num_simdgroups * results_per_simdgroup) +
simd_gid * results_per_simdgroup;
w += out_row * in_vec_size_w + simd_lid * packs_per_thread;
scales += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
biases += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
x += tid.z * in_vec_size + simd_lid * values_per_thread;
y += tid.z * out_vec_size + out_row;
x += tid.y * in_vec_size + simd_lid * values_per_thread;
y += tid.y * out_vec_size + out_row;
for (int k = 0; k < in_vec_size; k += block_size) {
U sum = load_vector<T, U, values_per_thread, bits>(x, x_thread);
@ -440,15 +440,15 @@ template <typename T, int group_size, int bits, int packs_per_thread>
}
}
template <typename T, const int group_size, const int bits>
[[kernel]] void qmv(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
template <typename T, int group_size, int bits>
METAL_FUNC void qmv_impl(
const device uint32_t* w,
const device T* scales,
const device T* biases,
const device T* x,
device T* y,
const constant int& in_vec_size,
const constant int& out_vec_size,
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
@ -468,7 +468,7 @@ template <typename T, const int group_size, const int bits>
// Adjust positions
const int in_vec_size_w = in_vec_size / pack_factor;
const int in_vec_size_g = in_vec_size / group_size;
const int out_row = tid.y * (num_simdgroups * results_per_simdgroup) +
const int out_row = tid.x * (num_simdgroups * results_per_simdgroup) +
simd_gid * results_per_simdgroup;
const int used_out_row = min(out_vec_size - results_per_simdgroup, out_row);
@ -482,8 +482,8 @@ template <typename T, const int group_size, const int bits>
w += out_row * in_vec_size_w + simd_lid * packs_per_thread;
scales += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
biases += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
x += tid.z * in_vec_size + simd_lid * values_per_thread;
y += tid.z * out_vec_size + out_row;
x += tid.y * in_vec_size + simd_lid * values_per_thread;
y += tid.y * out_vec_size + out_row;
int k = 0;
for (; k < in_vec_size - block_size; k += block_size) {
@ -537,8 +537,8 @@ template <typename T, const int group_size, const int bits>
w += used_out_row * in_vec_size_w + simd_lid * packs_per_thread;
scales += used_out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
biases += used_out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
x += tid.z * in_vec_size + simd_lid * values_per_thread;
y += tid.z * out_vec_size + used_out_row;
x += tid.y * in_vec_size + simd_lid * values_per_thread;
y += tid.y * out_vec_size + used_out_row;
int k = 0;
for (; k < in_vec_size - block_size; k += block_size) {
@ -590,14 +590,14 @@ template <typename T, const int group_size, const int bits>
}
template <typename T, const int group_size, const int bits>
[[kernel]] void qvm(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
METAL_FUNC void qvm_impl(
const device T* x,
const device uint32_t* w,
const device T* scales,
const device T* biases,
device T* y,
const constant int& in_vec_size,
const constant int& out_vec_size,
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
@ -616,12 +616,12 @@ template <typename T, const int group_size, const int bits>
// Adjust positions
const int out_vec_size_w = out_vec_size / pack_factor;
const int out_vec_size_g = out_vec_size / group_size;
int out_col = tid.y * (num_simdgroups * pack_factor) + simd_gid * pack_factor;
int out_col = tid.x * (num_simdgroups * pack_factor) + simd_gid * pack_factor;
w += out_col / pack_factor;
scales += out_col / group_size;
biases += out_col / group_size;
x += tid.z * in_vec_size;
y += tid.z * out_vec_size + out_col;
x += tid.y * in_vec_size;
y += tid.y * out_vec_size + out_col;
if (out_col >= out_vec_size) {
return;
@ -675,15 +675,17 @@ template <
const int group_size,
const int bits,
const bool aligned_N>
[[kernel]] void qmm_t(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& M [[buffer(5)]],
const constant int& N [[buffer(6)]],
const constant int& K [[buffer(7)]],
METAL_FUNC void qmm_t_impl(
const device T* x,
const device uint32_t* w,
const device T* scales,
const device T* biases,
device T* y,
threadgroup T* Xs,
threadgroup T* Ws,
const constant int& M,
const constant int& N,
const constant int& K,
uint3 tid [[threadgroup_position_in_grid]],
uint lid [[thread_index_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
@ -713,9 +715,6 @@ template <
group_size,
bits>;
threadgroup T Xs[BM * BK_padded];
threadgroup T Ws[BN * BK_padded];
// Set the block
const int K_w = K / pack_factor;
const int K_g = K / group_size;
@ -797,15 +796,17 @@ template <
const int BN,
const int group_size,
const int bits>
[[kernel]] void qmm_n(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& M [[buffer(5)]],
const constant int& N [[buffer(6)]],
const constant int& K [[buffer(7)]],
METAL_FUNC void qmm_n_impl(
const device T* x,
const device uint32_t* w,
const device T* scales,
const device T* biases,
device T* y,
threadgroup T* Xs,
threadgroup T* Ws,
const constant int& M,
const constant int& N,
const constant int& K,
uint3 tid [[threadgroup_position_in_grid]],
uint lid [[thread_index_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
@ -836,9 +837,6 @@ template <
group_size,
bits>;
threadgroup T Xs[BM * BK_padded];
threadgroup T Ws[BK * BN_padded];
// Set the block
const int y_row = tid.y * BM;
const int y_col = tid.x * BN;
@ -923,6 +921,518 @@ template <
}
}
template <typename T>
METAL_FUNC void adjust_matrix_offsets(
const device T*& x,
const device uint32_t*& w,
const device T*& scales,
const device T*& biases,
const device uint32_t* lhs_indices,
const device uint32_t* rhs_indices,
device T*& y,
int output_stride,
const constant int& batch_ndims,
const constant int* batch_shape,
const constant size_t* lhs_strides,
const constant size_t* rhs_strides,
const constant int& x_batch_ndims,
const constant int* x_shape,
const constant size_t* x_strides,
const constant int& w_batch_ndims,
const constant int* w_shape,
const constant size_t* w_strides,
const constant size_t* s_strides,
const constant size_t* b_strides,
uint3 tid [[threadgroup_position_in_grid]]) {
// Set the input/output matrices
uint32_t x_idx;
uint32_t w_idx;
if (batch_ndims == 1) {
x_idx = lhs_indices[tid.z * lhs_strides[0]];
w_idx = rhs_indices[tid.z * rhs_strides[0]];
} else {
ulong2 idx = elem_to_loc_broadcast(
tid.z, batch_shape, lhs_strides, rhs_strides, batch_ndims);
x_idx = lhs_indices[idx.x];
w_idx = rhs_indices[idx.y];
}
if (x_batch_ndims == 1) {
x += x_idx * x_strides[0];
} else {
x += elem_to_loc(x_idx, x_shape, x_strides, x_batch_ndims);
}
if (w_batch_ndims == 1) {
w += w_idx * w_strides[0];
scales += w_idx * s_strides[0];
biases += w_idx * b_strides[0];
} else {
ulong3 idx = elem_to_loc_broadcast(
w_idx, w_shape, w_strides, s_strides, b_strides, w_batch_ndims);
w += idx.x;
scales += idx.y;
biases += idx.z;
}
y += tid.z * output_stride;
}
template <typename T, int group_size, int bits, int packs_per_thread>
[[kernel]] void qmv_fast(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
qmv_fast_impl<T, group_size, bits, packs_per_thread>(
w,
scales,
biases,
x,
y,
in_vec_size,
out_vec_size,
tid,
simd_gid,
simd_lid);
}
template <typename T, const int group_size, const int bits>
[[kernel]] void qmv(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
qmv_impl<T, group_size, bits>(
w,
scales,
biases,
x,
y,
in_vec_size,
out_vec_size,
tid,
simd_gid,
simd_lid);
}
template <typename T, const int group_size, const int bits>
[[kernel]] void qvm(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
qvm_impl<T, group_size, bits>(
x,
w,
scales,
biases,
y,
in_vec_size,
out_vec_size,
tid,
simd_gid,
simd_lid);
}
template <
typename T,
const int BM,
const int BK,
const int BN,
const int group_size,
const int bits,
const bool aligned_N>
[[kernel]] void qmm_t(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& M [[buffer(5)]],
const constant int& N [[buffer(6)]],
const constant int& K [[buffer(7)]],
uint3 tid [[threadgroup_position_in_grid]],
uint lid [[thread_index_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
(void)lid;
constexpr int BK_padded = (BK + 16 / sizeof(T));
threadgroup T Xs[BM * BK_padded];
threadgroup T Ws[BN * BK_padded];
qmm_t_impl<T, BM, BK, BN, group_size, bits, aligned_N>(
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
}
template <
typename T,
const int BM,
const int BK,
const int BN,
const int group_size,
const int bits>
[[kernel]] void qmm_n(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& M [[buffer(5)]],
const constant int& N [[buffer(6)]],
const constant int& K [[buffer(7)]],
uint3 tid [[threadgroup_position_in_grid]],
uint lid [[thread_index_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
(void)lid;
constexpr int BK_padded = (BK + 16 / sizeof(T));
constexpr int BN_padded = (BN + 16 / sizeof(T));
threadgroup T Xs[BM * BK_padded];
threadgroup T Ws[BK * BN_padded];
qmm_n_impl<T, BM, BK, BN, group_size, bits>(
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
}
template <typename T, int group_size, int bits, int packs_per_thread>
[[kernel]] void bs_qmv_fast(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& in_vec_size [[buffer(7)]],
const constant int& out_vec_size [[buffer(8)]],
const constant int& batch_ndims [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* lhs_strides [[buffer(11)]],
const constant size_t* rhs_strides [[buffer(12)]],
const constant int& x_batch_ndims [[buffer(13)]],
const constant int* x_shape [[buffer(14)]],
const constant size_t* x_strides [[buffer(15)]],
const constant int& w_batch_ndims [[buffer(16)]],
const constant int* w_shape [[buffer(17)]],
const constant size_t* w_strides [[buffer(18)]],
const constant size_t* s_strides [[buffer(19)]],
const constant size_t* b_strides [[buffer(20)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
adjust_matrix_offsets<T>(
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
y,
out_vec_size,
batch_ndims,
batch_shape,
lhs_strides,
rhs_strides,
x_batch_ndims,
x_shape,
x_strides,
w_batch_ndims,
w_shape,
w_strides,
s_strides,
b_strides,
tid);
qmv_fast_impl<T, group_size, bits, packs_per_thread>(
w,
scales,
biases,
x,
y,
in_vec_size,
out_vec_size,
tid,
simd_gid,
simd_lid);
}
template <typename T, int group_size, int bits>
[[kernel]] void bs_qmv(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& in_vec_size [[buffer(7)]],
const constant int& out_vec_size [[buffer(8)]],
const constant int& batch_ndims [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* lhs_strides [[buffer(11)]],
const constant size_t* rhs_strides [[buffer(12)]],
const constant int& x_batch_ndims [[buffer(13)]],
const constant int* x_shape [[buffer(14)]],
const constant size_t* x_strides [[buffer(15)]],
const constant int& w_batch_ndims [[buffer(16)]],
const constant int* w_shape [[buffer(17)]],
const constant size_t* w_strides [[buffer(18)]],
const constant size_t* s_strides [[buffer(19)]],
const constant size_t* b_strides [[buffer(20)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
adjust_matrix_offsets<T>(
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
y,
out_vec_size,
batch_ndims,
batch_shape,
lhs_strides,
rhs_strides,
x_batch_ndims,
x_shape,
x_strides,
w_batch_ndims,
w_shape,
w_strides,
s_strides,
b_strides,
tid);
qmv_impl<T, group_size, bits>(
w,
scales,
biases,
x,
y,
in_vec_size,
out_vec_size,
tid,
simd_gid,
simd_lid);
}
template <typename T, int group_size, int bits>
[[kernel]] void bs_qvm(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& in_vec_size [[buffer(7)]],
const constant int& out_vec_size [[buffer(8)]],
const constant int& batch_ndims [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* lhs_strides [[buffer(11)]],
const constant size_t* rhs_strides [[buffer(12)]],
const constant int& x_batch_ndims [[buffer(13)]],
const constant int* x_shape [[buffer(14)]],
const constant size_t* x_strides [[buffer(15)]],
const constant int& w_batch_ndims [[buffer(16)]],
const constant int* w_shape [[buffer(17)]],
const constant size_t* w_strides [[buffer(18)]],
const constant size_t* s_strides [[buffer(19)]],
const constant size_t* b_strides [[buffer(20)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
adjust_matrix_offsets<T>(
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
y,
out_vec_size,
batch_ndims,
batch_shape,
lhs_strides,
rhs_strides,
x_batch_ndims,
x_shape,
x_strides,
w_batch_ndims,
w_shape,
w_strides,
s_strides,
b_strides,
tid);
qvm_impl<T, group_size, bits>(
x,
w,
scales,
biases,
y,
in_vec_size,
out_vec_size,
tid,
simd_gid,
simd_lid);
}
template <
typename T,
const int BM,
const int BK,
const int BN,
const int group_size,
const int bits,
const bool aligned_N>
[[kernel]] void bs_qmm_t(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& M [[buffer(7)]],
const constant int& N [[buffer(8)]],
const constant int& K [[buffer(9)]],
const constant int& batch_ndims [[buffer(10)]],
const constant int* batch_shape [[buffer(11)]],
const constant size_t* lhs_strides [[buffer(12)]],
const constant size_t* rhs_strides [[buffer(13)]],
const constant int& x_batch_ndims [[buffer(14)]],
const constant int* x_shape [[buffer(15)]],
const constant size_t* x_strides [[buffer(16)]],
const constant int& w_batch_ndims [[buffer(17)]],
const constant int* w_shape [[buffer(18)]],
const constant size_t* w_strides [[buffer(19)]],
const constant size_t* s_strides [[buffer(20)]],
const constant size_t* b_strides [[buffer(21)]],
uint3 tid [[threadgroup_position_in_grid]],
uint lid [[thread_index_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
(void)lid;
constexpr int BK_padded = (BK + 16 / sizeof(T));
threadgroup T Xs[BM * BK_padded];
threadgroup T Ws[BN * BK_padded];
adjust_matrix_offsets<T>(
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
y,
M * N,
batch_ndims,
batch_shape,
lhs_strides,
rhs_strides,
x_batch_ndims,
x_shape,
x_strides,
w_batch_ndims,
w_shape,
w_strides,
s_strides,
b_strides,
tid);
qmm_t_impl<T, BM, BK, BN, group_size, bits, aligned_N>(
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
}
template <
typename T,
const int BM,
const int BK,
const int BN,
const int group_size,
const int bits>
[[kernel]] void bs_qmm_n(
const device T* x [[buffer(0)]],
const device uint32_t* w [[buffer(1)]],
const device T* scales [[buffer(2)]],
const device T* biases [[buffer(3)]],
const device uint32_t* lhs_indices [[buffer(4)]],
const device uint32_t* rhs_indices [[buffer(5)]],
device T* y [[buffer(6)]],
const constant int& M [[buffer(7)]],
const constant int& N [[buffer(8)]],
const constant int& K [[buffer(9)]],
const constant int& batch_ndims [[buffer(10)]],
const constant int* batch_shape [[buffer(11)]],
const constant size_t* lhs_strides [[buffer(12)]],
const constant size_t* rhs_strides [[buffer(13)]],
const constant int& x_batch_ndims [[buffer(14)]],
const constant int* x_shape [[buffer(15)]],
const constant size_t* x_strides [[buffer(16)]],
const constant int& w_batch_ndims [[buffer(17)]],
const constant int* w_shape [[buffer(18)]],
const constant size_t* w_strides [[buffer(19)]],
const constant size_t* s_strides [[buffer(20)]],
const constant size_t* b_strides [[buffer(21)]],
uint3 tid [[threadgroup_position_in_grid]],
uint lid [[thread_index_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
(void)lid;
constexpr int BK_padded = (BK + 16 / sizeof(T));
constexpr int BN_padded = (BN + 16 / sizeof(T));
threadgroup T Xs[BM * BK_padded];
threadgroup T Ws[BK * BN_padded];
adjust_matrix_offsets<T>(
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
y,
M * N,
batch_ndims,
batch_shape,
lhs_strides,
rhs_strides,
x_batch_ndims,
x_shape,
x_strides,
w_batch_ndims,
w_shape,
w_strides,
s_strides,
b_strides,
tid);
qmm_n_impl<T, BM, BK, BN, group_size, bits>(
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
}
#define instantiate_qmv_fast(name, itype, group_size, bits, packs_per_thread) \
template [[host_name("qmv_" #name "_gs_" #group_size "_b_" #bits \
"_fast")]] [[kernel]] void \
@ -1089,3 +1599,241 @@ instantiate_qmm_n_types( 64, 8)
instantiate_qmm_n_types( 32, 2)
instantiate_qmm_n_types( 32, 4)
instantiate_qmm_n_types( 32, 8) // clang-format on
#define instantiate_bs_qmv_fast( \
name, itype, group_size, bits, packs_per_thread) \
template [[host_name("bs_qmv_" #name "_gs_" #group_size "_b_" #bits \
"_fast")]] [[kernel]] void \
bs_qmv_fast<itype, group_size, bits, packs_per_thread>( \
const device uint32_t* w [[buffer(0)]], \
const device itype* scales [[buffer(1)]], \
const device itype* biases [[buffer(2)]], \
const device itype* x [[buffer(3)]], \
const device uint32_t* lhs_indices [[buffer(4)]], \
const device uint32_t* rhs_indices [[buffer(5)]], \
device itype* y [[buffer(6)]], \
const constant int& in_vec_size [[buffer(7)]], \
const constant int& out_vec_size [[buffer(8)]], \
const constant int& batch_ndims [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* lhs_strides [[buffer(11)]], \
const constant size_t* rhs_strides [[buffer(12)]], \
const constant int& x_batch_ndims [[buffer(13)]], \
const constant int* x_shape [[buffer(14)]], \
const constant size_t* x_strides [[buffer(15)]], \
const constant int& w_batch_ndims [[buffer(16)]], \
const constant int* w_shape [[buffer(17)]], \
const constant size_t* w_strides [[buffer(18)]], \
const constant size_t* s_strides [[buffer(19)]], \
const constant size_t* b_strides [[buffer(20)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_bs_qmv_fast_types(group_size, bits, packs_per_thread) \
instantiate_bs_qmv_fast(float32, float, group_size, bits, packs_per_thread) \
instantiate_bs_qmv_fast(float16, half, group_size, bits, packs_per_thread) \
instantiate_bs_qmv_fast(bfloat16, bfloat16_t, group_size, bits, packs_per_thread) // clang-format on
// clang-format off
instantiate_bs_qmv_fast_types(128, 2, 1)
instantiate_bs_qmv_fast_types(128, 4, 2)
instantiate_bs_qmv_fast_types(128, 8, 2)
instantiate_bs_qmv_fast_types( 64, 2, 1)
instantiate_bs_qmv_fast_types( 64, 4, 2)
instantiate_bs_qmv_fast_types( 64, 8, 2)
instantiate_bs_qmv_fast_types( 32, 2, 1)
instantiate_bs_qmv_fast_types( 32, 4, 2)
instantiate_bs_qmv_fast_types( 32, 8, 2) // clang-format on
#define instantiate_bs_qmv(name, itype, group_size, bits) \
template [[host_name("bs_qmv_" #name "_gs_" #group_size \
"_b_" #bits)]] [[kernel]] void \
bs_qmv<itype, group_size, bits>( \
const device uint32_t* w [[buffer(0)]], \
const device itype* scales [[buffer(1)]], \
const device itype* biases [[buffer(2)]], \
const device itype* x [[buffer(3)]], \
const device uint32_t* lhs_indices [[buffer(4)]], \
const device uint32_t* rhs_indices [[buffer(5)]], \
device itype* y [[buffer(6)]], \
const constant int& in_vec_size [[buffer(7)]], \
const constant int& out_vec_size [[buffer(8)]], \
const constant int& batch_ndims [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* lhs_strides [[buffer(11)]], \
const constant size_t* rhs_strides [[buffer(12)]], \
const constant int& x_batch_ndims [[buffer(13)]], \
const constant int* x_shape [[buffer(14)]], \
const constant size_t* x_strides [[buffer(15)]], \
const constant int& w_batch_ndims [[buffer(16)]], \
const constant int* w_shape [[buffer(17)]], \
const constant size_t* w_strides [[buffer(18)]], \
const constant size_t* s_strides [[buffer(19)]], \
const constant size_t* b_strides [[buffer(20)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_bs_qmv_types(group_size, bits) \
instantiate_bs_qmv(float32, float, group_size, bits) \
instantiate_bs_qmv(float16, half, group_size, bits) \
instantiate_bs_qmv(bfloat16, bfloat16_t, group_size, bits) // clang-format on
// clang-format off
instantiate_bs_qmv_types(128, 2)
instantiate_bs_qmv_types(128, 4)
instantiate_bs_qmv_types(128, 8)
instantiate_bs_qmv_types( 64, 2)
instantiate_bs_qmv_types( 64, 4)
instantiate_bs_qmv_types( 64, 8)
instantiate_bs_qmv_types( 32, 2)
instantiate_bs_qmv_types( 32, 4)
instantiate_bs_qmv_types( 32, 8) // clang-format on
#define instantiate_bs_qvm(name, itype, group_size, bits) \
template [[host_name("bs_qvm_" #name "_gs_" #group_size \
"_b_" #bits)]] [[kernel]] void \
bs_qvm<itype, group_size, bits>( \
const device itype* x [[buffer(0)]], \
const device uint32_t* w [[buffer(1)]], \
const device itype* scales [[buffer(2)]], \
const device itype* biases [[buffer(3)]], \
const device uint32_t* lhs_indices [[buffer(4)]], \
const device uint32_t* rhs_indices [[buffer(5)]], \
device itype* y [[buffer(6)]], \
const constant int& in_vec_size [[buffer(7)]], \
const constant int& out_vec_size [[buffer(8)]], \
const constant int& batch_ndims [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* lhs_strides [[buffer(11)]], \
const constant size_t* rhs_strides [[buffer(12)]], \
const constant int& x_batch_ndims [[buffer(13)]], \
const constant int* x_shape [[buffer(14)]], \
const constant size_t* x_strides [[buffer(15)]], \
const constant int& w_batch_ndims [[buffer(16)]], \
const constant int* w_shape [[buffer(17)]], \
const constant size_t* w_strides [[buffer(18)]], \
const constant size_t* s_strides [[buffer(19)]], \
const constant size_t* b_strides [[buffer(20)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_bs_qvm_types(group_size, bits) \
instantiate_bs_qvm(float32, float, group_size, bits) \
instantiate_bs_qvm(float16, half, group_size, bits) \
instantiate_bs_qvm(bfloat16, bfloat16_t, group_size, bits) // clang-format on
// clang-format off
instantiate_bs_qvm_types(128, 2)
instantiate_bs_qvm_types(128, 4)
instantiate_bs_qvm_types(128, 8)
instantiate_bs_qvm_types( 64, 2)
instantiate_bs_qvm_types( 64, 4)
instantiate_bs_qvm_types( 64, 8)
instantiate_bs_qvm_types( 32, 2)
instantiate_bs_qvm_types( 32, 4)
instantiate_bs_qvm_types( 32, 8) // clang-format on
#define instantiate_bs_qmm_t(name, itype, group_size, bits, aligned_N) \
template [[host_name("bs_qmm_t_" #name "_gs_" #group_size "_b_" #bits \
"_alN_" #aligned_N)]] [[kernel]] void \
bs_qmm_t<itype, 32, 32, 32, group_size, bits, aligned_N>( \
const device itype* x [[buffer(0)]], \
const device uint32_t* w [[buffer(1)]], \
const device itype* scales [[buffer(2)]], \
const device itype* biases [[buffer(3)]], \
const device uint32_t* lhs_indices [[buffer(4)]], \
const device uint32_t* rhs_indices [[buffer(5)]], \
device itype* y [[buffer(6)]], \
const constant int& M [[buffer(7)]], \
const constant int& N [[buffer(8)]], \
const constant int& K [[buffer(9)]], \
const constant int& batch_ndims [[buffer(10)]], \
const constant int* batch_shape [[buffer(11)]], \
const constant size_t* lhs_strides [[buffer(12)]], \
const constant size_t* rhs_strides [[buffer(13)]], \
const constant int& x_batch_ndims [[buffer(14)]], \
const constant int* x_shape [[buffer(15)]], \
const constant size_t* x_strides [[buffer(16)]], \
const constant int& w_batch_ndims [[buffer(17)]], \
const constant int* w_shape [[buffer(18)]], \
const constant size_t* w_strides [[buffer(19)]], \
const constant size_t* s_strides [[buffer(20)]], \
const constant size_t* b_strides [[buffer(21)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint lid [[thread_index_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_bs_qmm_t_types(group_size, bits) \
instantiate_bs_qmm_t(float32, float, group_size, bits, false) \
instantiate_bs_qmm_t(float16, half, group_size, bits, false) \
instantiate_bs_qmm_t(bfloat16, bfloat16_t, group_size, bits, false) \
instantiate_bs_qmm_t(float32, float, group_size, bits, true) \
instantiate_bs_qmm_t(float16, half, group_size, bits, true) \
instantiate_bs_qmm_t(bfloat16, bfloat16_t, group_size, bits, true) // clang-format on
// clang-format off
instantiate_bs_qmm_t_types(128, 2)
instantiate_bs_qmm_t_types(128, 4)
instantiate_bs_qmm_t_types(128, 8)
instantiate_bs_qmm_t_types( 64, 2)
instantiate_bs_qmm_t_types( 64, 4)
instantiate_bs_qmm_t_types( 64, 8)
instantiate_bs_qmm_t_types( 32, 2)
instantiate_bs_qmm_t_types( 32, 4)
instantiate_bs_qmm_t_types( 32, 8) // clang-format on
#define instantiate_bs_qmm_n(name, itype, group_size, bits) \
template [[host_name("bs_qmm_n_" #name "_gs_" #group_size \
"_b_" #bits)]] [[kernel]] void \
bs_qmm_n<itype, 32, 32, 32, group_size, bits>( \
const device itype* x [[buffer(0)]], \
const device uint32_t* w [[buffer(1)]], \
const device itype* scales [[buffer(2)]], \
const device itype* biases [[buffer(3)]], \
const device uint32_t* lhs_indices [[buffer(4)]], \
const device uint32_t* rhs_indices [[buffer(5)]], \
device itype* y [[buffer(6)]], \
const constant int& M [[buffer(7)]], \
const constant int& N [[buffer(8)]], \
const constant int& K [[buffer(9)]], \
const constant int& batch_ndims [[buffer(10)]], \
const constant int* batch_shape [[buffer(11)]], \
const constant size_t* lhs_strides [[buffer(12)]], \
const constant size_t* rhs_strides [[buffer(13)]], \
const constant int& x_batch_ndims [[buffer(14)]], \
const constant int* x_shape [[buffer(15)]], \
const constant size_t* x_strides [[buffer(16)]], \
const constant int& w_batch_ndims [[buffer(17)]], \
const constant int* w_shape [[buffer(18)]], \
const constant size_t* w_strides [[buffer(19)]], \
const constant size_t* s_strides [[buffer(20)]], \
const constant size_t* b_strides [[buffer(21)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint lid [[thread_index_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_bs_qmm_n_types(group_size, bits) \
instantiate_bs_qmm_n(float32, float, group_size, bits) \
instantiate_bs_qmm_n(float16, half, group_size, bits) \
instantiate_bs_qmm_n(bfloat16, bfloat16_t, group_size, bits) // clang-format on
// clang-format off
instantiate_bs_qmm_n_types(128, 2)
instantiate_bs_qmm_n_types(128, 4)
instantiate_bs_qmm_n_types(128, 8)
instantiate_bs_qmm_n_types( 64, 2)
instantiate_bs_qmm_n_types( 64, 4)
instantiate_bs_qmm_n_types( 64, 8)
instantiate_bs_qmm_n_types( 32, 2)
instantiate_bs_qmm_n_types( 32, 4)
instantiate_bs_qmm_n_types( 32, 8) // clang-format on

View File

@ -55,7 +55,7 @@ void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
int bo = 8;
int bd = 32;
MTL::Size group_dims = MTL::Size(bd, 2, 1);
MTL::Size grid_dims = MTL::Size(1, O / bo, B);
MTL::Size grid_dims = MTL::Size(O / bo, B, 1);
compute_encoder.set_input_array(w, 0);
compute_encoder.set_input_array(scales, 1);
@ -82,7 +82,7 @@ void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
int bo = 8;
int bd = 32;
MTL::Size group_dims = MTL::Size(bd, 2, 1);
MTL::Size grid_dims = MTL::Size(1, (O + bo - 1) / bo, B);
MTL::Size grid_dims = MTL::Size((O + bo - 1) / bo, B, 1);
compute_encoder.set_input_array(w, 0);
compute_encoder.set_input_array(scales, 1);
@ -140,7 +140,7 @@ void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
int bo = 8;
int bd = 32;
MTL::Size group_dims = MTL::Size(bd, bo, 1);
MTL::Size grid_dims = MTL::Size(1, (O + bo - 1) / bo, B);
MTL::Size grid_dims = MTL::Size((O + bo - 1) / bo, B, 1);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(w, 1);
@ -196,4 +196,289 @@ void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
}
void BlockSparseQMM::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 6);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& s = stream();
auto& d = metal::device(s.device);
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& biases_pre = inputs[3];
auto& lhs_indices = inputs[4];
auto& rhs_indices = inputs[5];
// TODO: collapse batch dims
auto& batch_shape = lhs_indices.shape();
int batch_ndims = batch_shape.size();
auto& lhs_strides = lhs_indices.strides();
auto& rhs_strides = rhs_indices.strides();
// Ensure that the last two dims are row contiguous.
// TODO: Check if we really need this for x as well...
std::vector<array> copies;
auto ensure_row_contiguous_last_dims = [&copies, &s](const array& arr) {
auto stride_0 = arr.strides()[arr.ndim() - 2];
auto stride_1 = arr.strides()[arr.ndim() - 1];
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
return arr;
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
return arr_copy;
}
};
auto x = ensure_row_contiguous_last_dims(x_pre);
auto w = ensure_row_contiguous_last_dims(w_pre);
auto scales = ensure_row_contiguous_last_dims(scales_pre);
auto biases = ensure_row_contiguous_last_dims(biases_pre);
int x_batch_ndims = x.ndim() - 2;
auto& x_shape = x.shape();
auto& x_strides = x.strides();
int w_batch_ndims = w.ndim() - 2;
auto& w_shape = w.shape();
auto& w_strides = w.strides();
auto& s_strides = scales.strides();
auto& b_strides = biases.strides();
int D = x.shape(-1);
int B = x.shape(-2);
int O = out.shape(-1);
int N = out.size() / B / O;
if (transpose_) {
// Route to the fast bs_qmv kernel that has no bounds checking
if (B < 6 && O % 8 == 0 && D % 512 == 0 && D >= 512) {
std::ostringstream kname;
kname << "bs_qmv_" << type_to_name(out) << "_gs_" << group_size_ << "_b_"
<< bits_ << "_fast";
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int bo = 8;
int bd = 32;
MTL::Size group_dims = MTL::Size(bd, 2, 1);
MTL::Size grid_dims = MTL::Size(O / bo, B, N);
compute_encoder.set_input_array(w, 0);
compute_encoder.set_input_array(scales, 1);
compute_encoder.set_input_array(biases, 2);
compute_encoder.set_input_array(x, 3);
compute_encoder.set_input_array(lhs_indices, 4);
compute_encoder.set_input_array(rhs_indices, 5);
compute_encoder.set_output_array(out, 6);
compute_encoder->setBytes(&D, sizeof(int), 7);
compute_encoder->setBytes(&O, sizeof(int), 8);
compute_encoder->setBytes(&batch_ndims, sizeof(int), 9);
set_vector_bytes(compute_encoder, batch_shape, 10);
set_vector_bytes(compute_encoder, lhs_strides, 11);
set_vector_bytes(compute_encoder, rhs_strides, 12);
compute_encoder->setBytes(&x_batch_ndims, sizeof(int), 13);
set_vector_bytes(compute_encoder, x_shape, 14);
set_vector_bytes(compute_encoder, x_strides, 15);
compute_encoder->setBytes(&w_batch_ndims, sizeof(int), 16);
set_vector_bytes(compute_encoder, w_shape, 17);
set_vector_bytes(compute_encoder, w_strides, 18);
set_vector_bytes(compute_encoder, s_strides, 19);
set_vector_bytes(compute_encoder, b_strides, 20);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
}
else if (B < 6) {
std::ostringstream kname;
kname << "bs_qmv_" << type_to_name(out) << "_gs_" << group_size_ << "_b_"
<< bits_;
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int bo = 8;
int bd = 32;
MTL::Size group_dims = MTL::Size(bd, 2, 1);
MTL::Size grid_dims = MTL::Size((O + bo - 1) / bo, B, N);
compute_encoder.set_input_array(w, 0);
compute_encoder.set_input_array(scales, 1);
compute_encoder.set_input_array(biases, 2);
compute_encoder.set_input_array(x, 3);
compute_encoder.set_input_array(lhs_indices, 4);
compute_encoder.set_input_array(rhs_indices, 5);
compute_encoder.set_output_array(out, 6);
compute_encoder->setBytes(&D, sizeof(int), 7);
compute_encoder->setBytes(&O, sizeof(int), 8);
compute_encoder->setBytes(&batch_ndims, sizeof(int), 9);
set_vector_bytes(compute_encoder, batch_shape, 10);
set_vector_bytes(compute_encoder, lhs_strides, 11);
set_vector_bytes(compute_encoder, rhs_strides, 12);
compute_encoder->setBytes(&x_batch_ndims, sizeof(int), 13);
set_vector_bytes(compute_encoder, x_shape, 14);
set_vector_bytes(compute_encoder, x_strides, 15);
compute_encoder->setBytes(&w_batch_ndims, sizeof(int), 16);
set_vector_bytes(compute_encoder, w_shape, 17);
set_vector_bytes(compute_encoder, w_strides, 18);
set_vector_bytes(compute_encoder, s_strides, 19);
set_vector_bytes(compute_encoder, b_strides, 20);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
}
// Route to the bs_qmm_t
else {
std::ostringstream kname;
kname << "bs_qmm_t_" << type_to_name(out) << "_gs_" << group_size_
<< "_b_" << bits_ << "_alN_" << std::boolalpha << ((O % 32) == 0);
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int wn = 2;
int wm = 2;
int bm = 32;
int bn = 32;
int bk = 32;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size((O + bn - 1) / bn, (B + bm - 1) / bm, N);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(w, 1);
compute_encoder.set_input_array(scales, 2);
compute_encoder.set_input_array(biases, 3);
compute_encoder.set_input_array(lhs_indices, 4);
compute_encoder.set_input_array(rhs_indices, 5);
compute_encoder.set_output_array(out, 6);
compute_encoder->setBytes(&B, sizeof(int), 7);
compute_encoder->setBytes(&O, sizeof(int), 8);
compute_encoder->setBytes(&D, sizeof(int), 9);
compute_encoder->setBytes(&batch_ndims, sizeof(int), 10);
set_vector_bytes(compute_encoder, batch_shape, 11);
set_vector_bytes(compute_encoder, lhs_strides, 12);
set_vector_bytes(compute_encoder, rhs_strides, 13);
compute_encoder->setBytes(&x_batch_ndims, sizeof(int), 14);
set_vector_bytes(compute_encoder, x_shape, 15);
set_vector_bytes(compute_encoder, x_strides, 16);
compute_encoder->setBytes(&w_batch_ndims, sizeof(int), 17);
set_vector_bytes(compute_encoder, w_shape, 18);
set_vector_bytes(compute_encoder, w_strides, 19);
set_vector_bytes(compute_encoder, s_strides, 20);
set_vector_bytes(compute_encoder, b_strides, 21);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
}
} else {
// Route to the bs_qvm kernel
if (B < 4) {
std::ostringstream kname;
kname << "bs_qvm_" << type_to_name(out) << "_gs_" << group_size_ << "_b_"
<< bits_;
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int bo = 8;
int bd = 32;
MTL::Size group_dims = MTL::Size(bd, bo, 1);
MTL::Size grid_dims = MTL::Size((O + bo - 1) / bo, B, N);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(w, 1);
compute_encoder.set_input_array(scales, 2);
compute_encoder.set_input_array(biases, 3);
compute_encoder.set_input_array(lhs_indices, 4);
compute_encoder.set_input_array(rhs_indices, 5);
compute_encoder.set_output_array(out, 6);
compute_encoder->setBytes(&D, sizeof(int), 7);
compute_encoder->setBytes(&O, sizeof(int), 8);
compute_encoder->setBytes(&batch_ndims, sizeof(int), 9);
set_vector_bytes(compute_encoder, batch_shape, 10);
set_vector_bytes(compute_encoder, lhs_strides, 11);
set_vector_bytes(compute_encoder, rhs_strides, 12);
compute_encoder->setBytes(&x_batch_ndims, sizeof(int), 13);
set_vector_bytes(compute_encoder, x_shape, 14);
set_vector_bytes(compute_encoder, x_strides, 15);
compute_encoder->setBytes(&w_batch_ndims, sizeof(int), 16);
set_vector_bytes(compute_encoder, w_shape, 17);
set_vector_bytes(compute_encoder, w_strides, 18);
set_vector_bytes(compute_encoder, s_strides, 19);
set_vector_bytes(compute_encoder, b_strides, 20);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
}
// Route to bs_qmm_n
else {
std::ostringstream kname;
kname << "bs_qmm_n_" << type_to_name(out) << "_gs_" << group_size_
<< "_b_" << bits_;
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int wn = 2;
int wm = 2;
int bm = 32;
int bn = 32;
int bk = 32;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(O / bn, (B + bm - 1) / bm, N);
if ((O % bn) != 0) {
std::ostringstream msg;
msg << "[quantized_matmul] The output size should be divisible by "
<< bn << " but received " << O << ".";
throw std::runtime_error(msg.str());
}
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(w, 1);
compute_encoder.set_input_array(scales, 2);
compute_encoder.set_input_array(biases, 3);
compute_encoder.set_input_array(lhs_indices, 4);
compute_encoder.set_input_array(rhs_indices, 5);
compute_encoder.set_output_array(out, 6);
compute_encoder->setBytes(&B, sizeof(int), 7);
compute_encoder->setBytes(&O, sizeof(int), 8);
compute_encoder->setBytes(&D, sizeof(int), 9);
compute_encoder->setBytes(&batch_ndims, sizeof(int), 10);
set_vector_bytes(compute_encoder, batch_shape, 11);
set_vector_bytes(compute_encoder, lhs_strides, 12);
set_vector_bytes(compute_encoder, rhs_strides, 13);
compute_encoder->setBytes(&x_batch_ndims, sizeof(int), 14);
set_vector_bytes(compute_encoder, x_shape, 15);
set_vector_bytes(compute_encoder, x_strides, 16);
compute_encoder->setBytes(&w_batch_ndims, sizeof(int), 17);
set_vector_bytes(compute_encoder, w_shape, 18);
set_vector_bytes(compute_encoder, w_strides, 19);
set_vector_bytes(compute_encoder, s_strides, 20);
set_vector_bytes(compute_encoder, b_strides, 21);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
}
}
}
} // namespace mlx::core

View File

@ -35,6 +35,7 @@ NO_GPU(AsStrided)
NO_GPU(BitwiseBinary)
NO_GPU(BlockMaskedMM)
NO_GPU(BlockSparseMM)
NO_GPU(BlockSparseQMM)
NO_GPU(Broadcast)
NO_GPU(Ceil)
NO_GPU_MULTI(Compiled)

View File

@ -50,6 +50,83 @@ Dtype at_least_float(const Dtype& d) {
return issubdtype(d, inexact) ? d : promote_types(d, float32);
}
array indices_or_default(
std::optional<array> indices,
const array& x,
StreamOrDevice s) {
if (indices.has_value()) {
return indices.value();
}
std::vector<int> shape(x.shape().begin(), x.shape().end() - 2);
int total =
std::reduce(shape.begin(), shape.end(), 1, std::multiplies<int>());
return reshape(arange(total, uint32, s), shape, s);
}
std::pair<int, int> extract_quantized_matmul_dims(
std::string_view tag,
const array& x,
const array& w,
const array& scales,
const array& biases,
bool transpose,
int group_size,
int bits) {
if (w.dtype() != uint32) {
std::ostringstream msg;
msg << "[" << tag << "] The weight matrix should be uint32 "
<< "but received" << w.dtype();
throw std::invalid_argument(msg.str());
}
if (scales.shape() != biases.shape()) {
std::ostringstream msg;
msg << "[" << tag << "] Scales and biases should have the same shape. "
<< "Received scales with shape " << scales.shape()
<< " and biases with " << biases.shape();
throw std::invalid_argument(msg.str());
}
if (!std::equal(
w.shape().begin(), w.shape().end() - 2, scales.shape().begin())) {
std::ostringstream msg;
msg << "[" << tag
<< "] Weight, scales and biases should have the same batch shape. "
<< "Received weight with shape " << w.shape() << ", scales with "
<< scales.shape() << " and biases with " << biases.shape();
throw std::invalid_argument(msg.str());
}
if (w.shape(-1) * 32 / bits != scales.shape(-1) * group_size) {
std::ostringstream msg;
msg << "[" << tag << "] The shapes of the weight and scales are "
<< "incompatible based on bits and group_size. w.shape() == "
<< w.shape() << " and scales.shape() == " << scales.shape()
<< " with group_size=" << group_size << " and bits=" << bits;
throw std::invalid_argument(msg.str());
}
int x_inner_dims = x.shape(-1);
// Calculate the expanded w's dims
int w_inner_dims = (transpose) ? w.shape(-1) * 32 / bits : w.shape(-2);
int w_outer_dims = (transpose) ? w.shape(-2) : w.shape(-1) * 32 / bits;
if (w_inner_dims != x_inner_dims) {
std::ostringstream msg;
msg << "[" << tag << "] Last dimension of first input with "
<< "shape (..., " << x_inner_dims << ") does not match "
<< "the expanded quantized matrix (" << w_inner_dims << ", "
<< w_outer_dims << ") computed from shape " << w.shape()
<< " with group_size=" << group_size << ", bits=" << bits
<< " and transpose=" << std::boolalpha << transpose;
throw std::invalid_argument(msg.str());
}
return {w_inner_dims, w_outer_dims};
}
} // namespace
array arange(
@ -3203,7 +3280,7 @@ array conv_general(
}
array quantized_matmul(
const array& in_x,
const array& x,
const array& w,
const array& scales,
const array& biases,
@ -3211,13 +3288,10 @@ array quantized_matmul(
int group_size /* = 64 */,
int bits /* = 4 */,
StreamOrDevice s /* = {} */) {
array x = in_x;
if (w.dtype() != uint32) {
std::ostringstream msg;
msg << "[quantized_matmul] The weight matrix should be uint32 "
<< "but received" << w.dtype();
throw std::invalid_argument(msg.str());
}
// Check and extract the quantized matrix shape against x
auto [w_inner_dims, w_outer_dims] = extract_quantized_matmul_dims(
"quantized_matmul", x, w, scales, biases, transpose, group_size, bits);
if (w.ndim() != 2) {
std::ostringstream msg;
msg << "[quantized_matmul] Batched quantized matmul is not supported for now "
@ -3225,42 +3299,6 @@ array quantized_matmul(
throw std::invalid_argument(msg.str());
}
// Keep x's batch dimensions to reshape it back after the matmul
auto original_shape = x.shape();
int x_inner_dims = original_shape.back();
if (scales.ndim() != 2 || scales.shape() != biases.shape()) {
std::ostringstream msg;
msg << "[quantized_matmul] Scales and biases should have the same 2D shape. "
<< "Received scales with shape " << scales.shape()
<< " and biases with " << biases.shape();
throw std::invalid_argument(msg.str());
}
if (w.shape(1) * 32 / bits != scales.shape(1) * group_size) {
std::ostringstream msg;
msg << "[quantized_matmul] The shapes of the weight and scales are "
<< "incompatible based on bits and group_size. w.shape() == "
<< w.shape() << " and scales.shape() == " << scales.shape()
<< " with group_size=" << group_size << " and bits=" << bits;
throw std::invalid_argument(msg.str());
}
// Calculate the expanded w's dims
int w_inner_dims = (transpose) ? w.shape(1) * 32 / bits : w.shape(0);
int w_outer_dims = (transpose) ? w.shape(0) : w.shape(1) * 32 / bits;
if (w_inner_dims != x_inner_dims) {
std::ostringstream msg;
msg << "[quantized_matmul] Last dimension of first input with "
<< "shape (..., " << x_inner_dims << ") does not match "
<< "the expanded quantized matrix (" << w_inner_dims << ", "
<< w_outer_dims << ") computed from shape " << w.shape()
<< " with group_size=" << group_size << ", bits=" << bits
<< " and transpose=" << std::boolalpha << transpose;
throw std::invalid_argument(msg.str());
}
auto dtype = result_type(x, scales, biases);
if (!issubdtype(dtype, floating)) {
std::ostringstream msg;
@ -3270,10 +3308,11 @@ array quantized_matmul(
<< " and biases.dtype() == " << biases.dtype();
throw std::invalid_argument(msg.str());
}
std::vector<array> inputs;
original_shape.back() = w_outer_dims;
auto out_shape = x.shape();
out_shape.back() = w_outer_dims;
return array(
std::move(original_shape),
std::move(out_shape),
dtype,
std::make_shared<QuantizedMatmul>(
to_stream(s), group_size, bits, transpose),
@ -3302,11 +3341,14 @@ std::tuple<array, array, array> quantize(
throw std::invalid_argument(msg.str());
}
if (w.ndim() != 2) {
throw std::invalid_argument("[quantize] Only matrices supported for now");
if (w.ndim() < 2) {
std::ostringstream msg;
msg << "[quantize] The matrix to be quantized must have at least 2 dimension "
<< "but it has only " << w.ndim() << ".";
throw std::invalid_argument(msg.str());
}
if ((w.shape(1) % group_size) != 0) {
if ((w.shape(-1) % group_size) != 0) {
std::ostringstream msg;
msg << "[quantize] The last dimension of the matrix needs to be divisible by "
<< "the quantization group size " << group_size
@ -3327,7 +3369,7 @@ std::tuple<array, array, array> quantize(
// at least we bail out early which will result in a nice readable error.
//
// Hopefully nobody is quantizing matrices that small anyway.
if (w.shape(1) < 32 * el_per_int) {
if (w.shape(-1) < 32 * el_per_int) {
std::ostringstream msg;
msg << "[quantize] The feature dimension (2nd dimension of the matrix) is "
<< "too small for quantization. We support >=512 for 2 bits, "
@ -3336,9 +3378,12 @@ std::tuple<array, array, array> quantize(
throw std::invalid_argument(msg.str());
}
// Prepare the shape for the outputs.
auto wshape = w.shape();
wshape.back() = -1;
// Compute scales and biases
array packed_w =
reshape(w, {w.shape(0), w.shape(1) / group_size, group_size}, s);
array packed_w = reshape(w, {-1, w.shape(-1) / group_size, group_size}, s);
array w_max = max(packed_w, /* axis= */ -1, /* keepdims= */ true, s);
array w_min = min(packed_w, /* axis= */ -1, /* keepdims= */ true, s);
@ -3357,12 +3402,14 @@ std::tuple<array, array, array> quantize(
zero,
n_bins),
uint32);
packed_w = reshape(packed_w, {w.shape(0), -1, el_per_int}, s);
packed_w = reshape(packed_w, {packed_w.shape(0), -1, el_per_int}, s);
packed_w = sum(
multiply(packed_w, shifts, s), /* axis= */ 2, /* keepdims= */ false, s);
return std::make_tuple(
packed_w, squeeze(scales, -1, s), squeeze(biases, -1, s));
reshape(packed_w, wshape, s),
reshape(scales, wshape, s),
reshape(biases, wshape, s));
}
array dequantize(
@ -3382,11 +3429,21 @@ array dequantize(
msg << "[dequantize] Invalid value for group_size: " << group_size;
throw std::invalid_argument(msg.str());
}
if (w.ndim() != 2 || scales.ndim() != 2 || biases.ndim() != 2) {
throw std::invalid_argument("[dequantize] Only matrices supported for now");
if (w.ndim() < 2 || scales.ndim() < 2 || biases.ndim() < 2) {
std::ostringstream msg;
msg << "[quantize] The matrix to be quantized must have at least 2 dimension "
<< "but it has only " << w.ndim() << ".";
throw std::invalid_argument(msg.str());
}
if (w.shape(0) != scales.shape(0) || w.shape(0) != biases.shape(0)) {
auto wshape = w.shape();
auto sshape = scales.shape();
auto bshape = biases.shape();
wshape.back() = -1;
sshape.back() = -1;
bshape.back() = -1;
if (wshape != sshape || wshape != bshape) {
throw std::invalid_argument(
"[dequantize] Shape of scales and biases does not match the matrix");
}
@ -3399,7 +3456,7 @@ array dequantize(
// Compute some constants for the dequantization
int el_per_int = 32 / bits;
if (w.shape(1) * el_per_int != scales.shape(1) * group_size) {
if (w.shape(-1) * el_per_int != scales.shape(-1) * group_size) {
std::ostringstream msg;
msg << "[dequantize] Shape of scales and biases does not match the matrix "
<< "given the quantization parameters. Provided matrix of shape "
@ -3411,25 +3468,79 @@ array dequantize(
// Extract the pieces from the passed quantized matrix
std::vector<array> parts;
for (int start = 0; start < 32; start += bits) {
// TODO: Implement bitwise operators for integral types
int shift_left = 32 - (start + bits);
int shift_right = shift_left + start;
array p = multiply(w, array(1 << shift_left, uint32), s);
p = floor_divide(p, array(1 << shift_right, uint32), s);
p = expand_dims(p, -1, s);
parts.push_back(p);
parts.push_back(expand_dims(
right_shift(
left_shift(w, array(32 - (start + bits), uint32), s),
array(32 - bits, uint32),
s),
-1,
s));
}
array w_full = concatenate(parts, -1, s);
// Dequantize
w_full = reshape(w_full, {w.shape(0), -1, group_size}, s);
wshape.push_back(group_size);
w_full = reshape(w_full, wshape, s);
w_full = multiply(w_full, expand_dims(scales, -1, s), s);
w_full = add(w_full, expand_dims(biases, -1, s), s);
w_full = reshape(w_full, {w.shape(0), -1}, s);
w_full = reshape(w_full, sshape, s);
return w_full;
}
array block_sparse_qmm(
const array& x,
const array& w,
const array& scales,
const array& biases,
std::optional<array> lhs_indices_ /* = std::nullopt */,
std::optional<array> rhs_indices_ /* = std::nullopt */,
bool transpose /* = true */,
int group_size /* = 64 */,
int bits /* = 4 */,
StreamOrDevice s /* = {} */) {
if (!lhs_indices_ && !rhs_indices_) {
return quantized_matmul(
x, w, scales, biases, transpose, group_size, bits, s);
}
auto [w_inner_dims, w_outer_dims] = extract_quantized_matmul_dims(
"block_sparse_qmm", x, w, scales, biases, transpose, group_size, bits);
// Extract indices and broadcast them
array lhs_indices = indices_or_default(lhs_indices_, x, s);
array rhs_indices = indices_or_default(rhs_indices_, w, s);
auto out_bsx_shape =
broadcast_shapes(lhs_indices.shape(), rhs_indices.shape());
lhs_indices = broadcast_to(lhs_indices, out_bsx_shape, s);
rhs_indices = broadcast_to(rhs_indices, out_bsx_shape, s);
// Compute the full output shape
auto out_shape = out_bsx_shape;
out_shape.push_back(x.shape(-2));
out_shape.push_back(w_outer_dims);
// and output type
auto out_type = result_type(x, scales, biases);
auto out = array(
std::move(out_shape),
out_type,
std::make_shared<BlockSparseQMM>(
to_stream(s), group_size, bits, transpose),
{astype(x, out_type, s),
w,
astype(scales, out_type, s),
astype(biases, out_type, s),
lhs_indices,
rhs_indices});
return out;
}
array tensordot(
const array& a,
const array& b,
@ -3879,24 +3990,8 @@ array block_sparse_mm(
b = astype(b, out_type, s);
// Handle broadcasting
std::vector<int> bsx_a(a.shape().begin(), a.shape().end() - 2);
std::vector<int> bsx_b(b.shape().begin(), b.shape().end() - 2);
auto indices_or_default = [&](const std::optional<array>& indices,
const std::vector<int>& bsx_shape) {
if (indices.has_value()) {
return indices.value();
} else {
int n_batch = 1;
for (auto& i : bsx_shape)
n_batch *= i;
return reshape(arange(n_batch, uint32, s), bsx_shape, s);
}
};
// Pull and broadcast indices
array lhs_indices = indices_or_default(lhs_indices_, bsx_a);
array rhs_indices = indices_or_default(rhs_indices_, bsx_b);
array lhs_indices = indices_or_default(lhs_indices_, a, s);
array rhs_indices = indices_or_default(rhs_indices_, b, s);
if (!issubdtype(lhs_indices.dtype(), integer)) {
throw std::invalid_argument(

View File

@ -1157,6 +1157,19 @@ array dequantize(
int bits = 4,
StreamOrDevice s = {});
/** Compute matrix products with matrix-level gather. */
array block_sparse_qmm(
const array& x,
const array& w,
const array& scales,
const array& biases,
std::optional<array> lhs_indices = std::nullopt,
std::optional<array> rhs_indices = std::nullopt,
bool transpose = true,
int group_size = 64,
int bits = 4,
StreamOrDevice s = {});
/** Returns a contraction of a and b over multiple dimensions. */
array tensordot(
const array& a,

View File

@ -2372,7 +2372,85 @@ std::vector<array> QuantizedMatmul::jvp(
bool QuantizedMatmul::is_equivalent(const Primitive& other) const {
const QuantizedMatmul& qm_other = static_cast<const QuantizedMatmul&>(other);
return group_size_ == qm_other.group_size_ && bits_ == qm_other.bits_;
return group_size_ == qm_other.group_size_ && bits_ == qm_other.bits_ &&
transpose_ == qm_other.transpose_;
}
std::pair<std::vector<array>, std::vector<int>> BlockSparseQMM::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
throw std::runtime_error("BlockSparseQMM::vmap NYI");
}
std::vector<array> BlockSparseQMM::vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>&) {
std::vector<array> vjps;
auto& cotan = cotangents[0];
auto& x = primals[0];
auto& w = primals[1];
auto& scales = primals[2];
auto& biases = primals[3];
auto& lhs_indices = primals[4];
auto& rhs_indices = primals[5];
for (auto arg : argnums) {
// gradient wrt to x
if (arg == 0) {
vjps.push_back(reshape(
scatter_add(
flatten(zeros_like(x, stream()), 0, -3, stream()),
lhs_indices,
expand_dims(
block_sparse_qmm(
cotan,
w,
scales,
biases,
std::nullopt,
rhs_indices,
!transpose_,
group_size_,
bits_,
stream()),
-3,
stream()),
0,
stream()),
x.shape(),
stream()));
}
// gradient wrt to the indices is undefined
else if (arg > 3) {
throw std::runtime_error(
"BlockSparseQMM::vjp cannot compute the gradient wrt the indices.");
}
// gradient wrt to w_q, scales or biases
else {
throw std::runtime_error(
"BlockSparseQMM::vjp no gradient wrt the quantized matrix yet.");
}
}
return vjps;
}
std::vector<array> BlockSparseQMM::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
throw std::runtime_error("BlockSparseQMM::jvp NYI");
}
bool BlockSparseQMM::is_equivalent(const Primitive& other) const {
const BlockSparseQMM& qm_other = static_cast<const BlockSparseQMM&>(other);
return group_size_ == qm_other.group_size_ && bits_ == qm_other.bits_ &&
transpose_ == qm_other.transpose_;
}
std::pair<std::vector<array>, std::vector<int>> RandomBits::vmap(

View File

@ -1467,6 +1467,34 @@ class QuantizedMatmul : public UnaryPrimitive {
void eval(const std::vector<array>& inputs, array& out);
};
class BlockSparseQMM : public UnaryPrimitive {
public:
explicit BlockSparseQMM(
Stream stream,
int group_size,
int bits,
bool transpose)
: UnaryPrimitive(stream),
group_size_(group_size),
bits_(bits),
transpose_(transpose) {};
void eval_cpu(const std::vector<array>& inputs, array& out) override;
void eval_gpu(const std::vector<array>& inputs, array& out) override;
DEFINE_VMAP()
DEFINE_GRADS()
DEFINE_PRINT(BlockSparseQMM)
bool is_equivalent(const Primitive& other) const override;
private:
int group_size_;
int bits_;
bool transpose_;
void eval(const std::vector<array>& inputs, array& out);
};
class RandomBits : public UnaryPrimitive {
public:
explicit RandomBits(Stream stream, const std::vector<int>& shape, int width)

View File

@ -4,6 +4,7 @@ import math
import mlx.core as mx
from mlx.nn.layers.base import Module
from mlx.nn.layers.quantized import QuantizedEmbedding
class Embedding(Module):
@ -37,3 +38,7 @@ class Embedding(Module):
weights are tied.
"""
return x @ self.weight.T
def to_quantized(self, group_size: int = 64, bits: int = 4):
"""Return a :obj:`QuantizedEmbedding` layer that approximates this embedding layer."""
return QuantizedEmbedding.from_embedding(self, group_size, bits)

View File

@ -5,6 +5,7 @@ from typing import Any
import mlx.core as mx
from mlx.nn.layers.base import Module
from mlx.nn.layers.quantized import QuantizedLinear
class Identity(Module):
@ -69,6 +70,10 @@ class Linear(Module):
x = x @ self["weight"].T
return x
def to_quantized(self, group_size: int = 64, bits: int = 4):
"""Return a :obj:`QuantizedLinear` layer that approximates this layer."""
return QuantizedLinear.from_linear(self, group_size, bits)
class Bilinear(Module):
r"""Applies a bilinear transformation to the inputs.

View File

@ -5,8 +5,6 @@ from typing import Callable, Optional
import mlx.core as mx
from mlx.nn.layers.base import Module
from mlx.nn.layers.embedding import Embedding
from mlx.nn.layers.linear import Linear
from mlx.utils import tree_map_with_path
@ -18,8 +16,9 @@ def quantize(
):
"""Quantize the sub-modules of a module according to a predicate.
By default all :obj:`Linear` and :obj:`Embedding` layers will be
quantized. Note also, the module is updated in-place.
By default all layers that define a ``to_quantized(group_size, bits)``
method will be quantized. Both :obj:`Linear` and :obj:`Embedding` layers
will be quantized. Note also, the module is updated in-place.
Args:
model (mlx.nn.Module): The model whose leaf modules may be quantized.
@ -30,18 +29,15 @@ def quantize(
class_predicate (Optional[Callable]): A callable which receives the
:obj:`Module` path and :obj:`Module` itself and returns ``True`` if
it should be quantized and ``False`` otherwise. If ``None``, then
all linear and embedding layers are quantized. Default: ``None``.
all layers that define a ``to_quantized(group_size, bits)`` method
are quantized. Default: ``None``.
"""
class_predicate = class_predicate or (
lambda _, m: isinstance(m, (Linear, Embedding))
)
class_predicate = class_predicate or (lambda _, m: hasattr(m, "to_quantized"))
def _maybe_quantize(path, m):
if class_predicate(path, m):
if isinstance(m, Linear):
return QuantizedLinear.from_linear(m, group_size, bits)
elif isinstance(m, Embedding):
return QuantizedEmbedding.from_embedding(m, group_size, bits)
if hasattr(m, "to_quantized"):
return m.to_quantized(group_size, bits)
else:
raise ValueError(f"Unable to quantize model of type {type(m)}")
else:
@ -129,7 +125,7 @@ class QuantizedEmbedding(Module):
@classmethod
def from_embedding(
cls, embedding_layer: Embedding, group_size: int = 64, bits: int = 4
cls, embedding_layer: Module, group_size: int = 64, bits: int = 4
):
"""Create a :obj:`QuantizedEmbedding` layer from an :obj:`Embedding` layer."""
embedding_dims, dims = embedding_layer.weight.shape
@ -220,7 +216,7 @@ class QuantizedLinear(Module):
return x
@classmethod
def from_linear(cls, linear_layer: Linear, group_size: int = 64, bits: int = 4):
def from_linear(cls, linear_layer: Module, group_size: int = 64, bits: int = 4):
"""Create a :obj:`QuantizedLinear` layer from a :obj:`Linear` layer."""
output_dims, input_dims = linear_layer.weight.shape
ql = cls(input_dims, output_dims, False, group_size, bits)

View File

@ -3747,6 +3747,52 @@ void init_ops(nb::module_& m) {
Returns:
result (array): The dequantized version of ``w``
)pbdoc");
m.def(
"block_sparse_qmm",
&block_sparse_qmm,
nb::arg(),
nb::arg(),
"scales"_a,
"biases"_a,
"lhs_indices"_a = nb::none(),
"rhs_indices"_a = nb::none(),
"transpose"_a = true,
"group_size"_a = 64,
"bits"_a = 4,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def block_sparse_qmm(x: array, w: array, /, scales: array, biases: array, lhs_indices: Optional[array] = None, rhs_indices: Optional[array] = None, transpose: bool = True, group_size: int = 64, bits: int = 4, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Perform quantized matrix multiplication with matrix-level gather.
This operation is the quantized equivalent to :func:`block_sparse_mm`.
Similar to :func:`block_sparse_mm`, the indices ``lhs_indices`` and
``rhs_indices`` contain flat indices along the batch dimensions (i.e.
all but the last two dimensions) of ``x`` and ``w`` respectively.
Note that ``scales`` and ``biases`` must have the same batch dimensions
as ``w`` since they represent the same quantized matrix.
Args:
x (array): Input array
w (array): Quantized matrix packed in unsigned integers
scales (array): The scales to use per ``group_size`` elements of ``w``
biases (array): The biases to use per ``group_size`` elements of ``w``
lhs_indices (array, optional): Integer indices for ``x`` (default: ``None``)
rhs_indices (array, optional): Integer indices for ``w`` (default: ``None``)
transpose (bool, optional): Defines whether to multiply with the
transposed ``w`` or not, namely whether we are performing
``x @ w.T`` or ``x @ w``. (default: ``True``)
group_size (int, optional): The size of the group in ``w`` that
shares a scale and bias. (default: ``64``)
bits (int, optional): The number of bits occupied by each element in
``w``. (default: ``4``)
Returns:
result (array): The result of the multiplication of ``x`` with ``w``
after gathering using ``lhs_indices`` and ``rhs_indices``.
)pbdoc");
m.def(
"tensordot",
[](const array& a,
@ -3933,7 +3979,7 @@ void init_ops(nb::module_& m) {
Matrix multiplication with matrix-level gather.
Performs a gather of the operands with the given indices followed by a (possibly batched) matrix multiplication of two arrays.
This operation is more efficient than explicitly applying a :func:``take`` followed by a :func:``matmul``.
This operation is more efficient than explicitly applying a :func:`take` followed by a :func:`matmul`.
The indices ``lhs_indices`` and ``rhs_indices`` contain flat indices along the batch dimensions (i.e. all but the last two dimensions) of ``a`` and ``b`` respectively.

View File

@ -277,6 +277,148 @@ class TestQuantized(mlx_tests.MLXTestCase):
self.assertEqual(y_q.shape, y_hat.shape)
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
def test_block_sparse_qmm(self):
def quantize(w, transpose=True, group_size=64, bits=4):
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits)
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits)
if transpose:
w_hat = w_hat.swapaxes(-1, -2)
return w_hat, qw, s, b
def test_shape(
M,
N,
K,
dtype=mx.float32,
batch_A=(),
batch_B=(),
lhs_indices=None,
rhs_indices=None,
transpose=True,
group_size=64,
bits=4,
):
with self.subTest(
M=M,
N=N,
K=K,
dtype=dtype,
batch_A=batch_A,
batch_B=batch_B,
lhs_indices=lhs_indices,
rhs_indices=rhs_indices,
transpose=transpose,
group_size=group_size,
bits=bits,
):
x = mx.random.normal(shape=batch_A + (M, K)).astype(dtype)
w = mx.random.normal(
shape=batch_B + ((N, K) if transpose else (K, N))
).astype(dtype)
w_hat, qw, s, b = quantize(w, transpose, group_size, bits)
if lhs_indices is not None:
lhs_indices = mx.array(lhs_indices)
if rhs_indices is not None:
rhs_indices = mx.array(rhs_indices)
c1 = mx.block_sparse_mm(x, w_hat, lhs_indices, rhs_indices)
c2 = mx.block_sparse_qmm(
x,
qw,
s,
b,
lhs_indices,
rhs_indices,
transpose=transpose,
group_size=group_size,
bits=bits,
)
self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
inputs = (
{
"batch_A": (1,),
"lhs_indices": (0,),
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (1,),
"lhs_indices": None,
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (2,),
"lhs_indices": None,
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (3,),
"lhs_indices": (0, 2),
"batch_B": (1,),
"rhs_indices": (0,),
},
{
"batch_A": (5,),
"lhs_indices": (0, 2),
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (4, 2),
"lhs_indices": (
(7, 6),
(5, 4),
(1, 2),
),
"batch_B": (4, 1),
"rhs_indices": ((2,), (0,), (1,)),
},
)
for kwargs in inputs:
test_shape(32, 32, 256, **kwargs)
test_shape(1, 32, 256, **kwargs)
test_shape(32, 256, 32, transpose=False, **kwargs)
test_shape(1, 256, 32, transpose=False, **kwargs)
test_shape(32, 32, 512, **kwargs)
test_shape(1, 32, 512, **kwargs)
test_shape(32, 512, 32, transpose=False, **kwargs)
test_shape(1, 512, 32, transpose=False, **kwargs)
def test_block_sparse_matmul_grad(self):
def quantize(w, transpose=True, group_size=64, bits=4):
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits)
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits)
if transpose:
w_hat = w_hat.swapaxes(-1, -2)
return w_hat, qw, s, b
lhs_indices = mx.array([[7, 6], [4, 1], [0, 2]], dtype=mx.uint32)
rhs_indices = mx.array([[2], [0], [1]], dtype=mx.uint32)
x = mx.random.normal((4, 2, 32, 256))
w = mx.random.normal((4, 1, 32, 256))
w_hat, qw, s, b = quantize(w)
def f_ref(x, w, i1, i2):
return mx.block_sparse_mm(x, w, i1, i2).sum()
def f_test(x, qw, s, b, i1, i2):
return mx.block_sparse_qmm(x, qw, s, b, i1, i2, transpose=True).sum()
r1 = f_ref(x, w_hat, lhs_indices, rhs_indices)
r2 = f_test(x, qw, s, b, lhs_indices, rhs_indices)
self.assertTrue(mx.allclose(r1, r2, atol=1e-4))
g1 = mx.grad(f_ref)(x, w_hat, lhs_indices, rhs_indices)
g2 = mx.grad(f_test)(x, qw, s, b, lhs_indices, rhs_indices)
self.assertTrue(mx.allclose(g1, g2, atol=1e-4))
if __name__ == "__main__":
unittest.main()