mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Support for quantized matmul with w and w^T (#349)
* Add the metal qvm implementation * Add qmm_n * Add gradient wrt to input for quantized_matmul
This commit is contained in:
committed by
GitHub
parent
d7ac050f4b
commit
e7f5059fe4
@@ -1,13 +1,62 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/backend/metal/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, int bits, int group_size>
|
||||
void _qmm(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
const int Ng = N / group_size;
|
||||
const int Nw = N / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const T* scales_local = scales;
|
||||
const T* biases_local = biases;
|
||||
|
||||
std::fill(result, result + N, 0);
|
||||
|
||||
for (int k = 0; k < K; k++) {
|
||||
T* result_local = result;
|
||||
T xi = *x++;
|
||||
|
||||
for (int n = 0; n < N; n += group_size) {
|
||||
T scale = *scales_local++;
|
||||
T bias = *biases_local++;
|
||||
for (int ng = 0; ng < packs_in_group; ng++) {
|
||||
uint32_t wi = *w_local++;
|
||||
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
wi >>= bits;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result += N;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int bits, int group_size>
|
||||
void _qmm_t(
|
||||
T* result,
|
||||
@@ -55,7 +104,7 @@ void _qmm_t(
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void _qmm_t_dispatch_typed(
|
||||
void _qmm_dispatch_typed(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
@@ -65,30 +114,55 @@ void _qmm_t_dispatch_typed(
|
||||
int N,
|
||||
int K,
|
||||
int group_size,
|
||||
int bits) {
|
||||
int bits,
|
||||
bool transposed_w) {
|
||||
switch (bits) {
|
||||
case 2: {
|
||||
switch (group_size) {
|
||||
case 64:
|
||||
return _qmm_t<T, 2, 64>(result, x, w, scales, biases, M, N, K);
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
return _qmm_t<T, 2, 128>(result, x, w, scales, biases, M, N, K);
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
case 4: {
|
||||
switch (group_size) {
|
||||
case 64:
|
||||
return _qmm_t<T, 4, 64>(result, x, w, scales, biases, M, N, K);
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
return _qmm_t<T, 4, 128>(result, x, w, scales, biases, M, N, K);
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
case 8: {
|
||||
switch (group_size) {
|
||||
case 64:
|
||||
return _qmm_t<T, 8, 64>(result, x, w, scales, biases, M, N, K);
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
return _qmm_t<T, 8, 128>(result, x, w, scales, biases, M, N, K);
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -100,21 +174,22 @@ void _qmm_t_dispatch_typed(
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
void _qmm_t_dispatch(
|
||||
void _qmm_dispatch(
|
||||
array out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
int bits,
|
||||
int group_size) {
|
||||
int group_size,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.size() / K;
|
||||
int N = w.shape(1);
|
||||
int N = out.shape(-1);
|
||||
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
_qmm_t_dispatch_typed<float>(
|
||||
_qmm_dispatch_typed<float>(
|
||||
out.data<float>(),
|
||||
x.data<float>(),
|
||||
w.data<uint32_t>(),
|
||||
@@ -124,10 +199,11 @@ void _qmm_t_dispatch(
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size);
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
_qmm_t_dispatch_typed<float16_t>(
|
||||
_qmm_dispatch_typed<float16_t>(
|
||||
out.data<float16_t>(),
|
||||
x.data<float16_t>(),
|
||||
w.data<uint32_t>(),
|
||||
@@ -137,10 +213,11 @@ void _qmm_t_dispatch(
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size);
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
_qmm_t_dispatch_typed<bfloat16_t>(
|
||||
_qmm_dispatch_typed<bfloat16_t>(
|
||||
out.data<bfloat16_t>(),
|
||||
x.data<bfloat16_t>(),
|
||||
w.data<uint32_t>(),
|
||||
@@ -150,7 +227,8 @@ void _qmm_t_dispatch(
|
||||
N,
|
||||
K,
|
||||
bits,
|
||||
group_size);
|
||||
group_size,
|
||||
transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
@@ -163,22 +241,28 @@ void _qmm_t_dispatch(
|
||||
void QuantizedMatmul::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 4);
|
||||
|
||||
auto& x = inputs[0];
|
||||
auto& w = inputs[1];
|
||||
auto& scales = inputs[2];
|
||||
auto& biases = inputs[3];
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
|
||||
if (w.strides()[0] != 1) {
|
||||
throw std::runtime_error("The quantized weight should be transposed");
|
||||
}
|
||||
auto ensure_row_contiguous = [](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
return arr_copy;
|
||||
}
|
||||
};
|
||||
|
||||
if (!x.flags().row_contiguous || !scales.flags().row_contiguous ||
|
||||
!biases.flags().row_contiguous) {
|
||||
throw std::runtime_error("x, scales and biases should be row contiguous.");
|
||||
}
|
||||
auto x = ensure_row_contiguous(x_pre);
|
||||
auto w = ensure_row_contiguous(w_pre);
|
||||
auto scales = ensure_row_contiguous(scales_pre);
|
||||
auto biases = ensure_row_contiguous(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
_qmm_t_dispatch(out, x, w, scales, biases, group_size_, bits_);
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
Reference in New Issue
Block a user