mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-19 19:38:16 +08:00
Add dropout2d (#250)
This commit is contained in:

committed by
GitHub

parent
8385f93cea
commit
e8deca84e0
@@ -33,7 +33,7 @@ from mlx.nn.layers.activations import (
|
||||
from mlx.nn.layers.base import Module
|
||||
from mlx.nn.layers.containers import Sequential
|
||||
from mlx.nn.layers.convolution import Conv1d, Conv2d
|
||||
from mlx.nn.layers.dropout import Dropout
|
||||
from mlx.nn.layers.dropout import Dropout, Dropout2d
|
||||
from mlx.nn.layers.embedding import Embedding
|
||||
from mlx.nn.layers.linear import Linear
|
||||
from mlx.nn.layers.normalization import GroupNorm, LayerNorm, RMSNorm
|
||||
|
@@ -32,4 +32,61 @@ class Dropout(Module):
|
||||
|
||||
mask = mx.random.bernoulli(self._p_1, x.shape)
|
||||
|
||||
return (1 / self._p_1) * mask.astype(x.dtype) * x
|
||||
return (1 / self._p_1) * mask * x
|
||||
|
||||
|
||||
class Dropout2d(Module):
|
||||
"""Apply 2D channel-wise dropout during training.
|
||||
|
||||
Randomly zero out entire channels independently with probability :math:`p`.
|
||||
This layer expects the channels to be last, i.e. the input shape should be
|
||||
``NWHC`` or ``WHC`` where:
|
||||
- ``N`` is the batch dimension
|
||||
- ``H`` is the input image height
|
||||
- ``W`` is the input image width
|
||||
- ``C`` is the number of input channels
|
||||
|
||||
The remaining channels are scaled by :math:`\frac{1}{1-p}` to
|
||||
maintain the expected value of each element. Unlike traditional dropout,
|
||||
which zeros individual entries, this layer zeros entire channels. This is
|
||||
beneficial for early convolution layers where adjacent pixels are
|
||||
correlated. In such case, traditional dropout may not effectively
|
||||
regularize activations. For more details, see [1].
|
||||
|
||||
[1]: Thompson, J., Goroshin, R., Jain, A., LeCun, Y. and Bregler C., 2015.
|
||||
Efficient Object Localization Using Convolutional Networks. CVPR 2015.
|
||||
|
||||
Args:
|
||||
p (float): Probability of zeroing a channel during training.
|
||||
"""
|
||||
|
||||
def __init__(self, p: float = 0.5):
|
||||
super().__init__()
|
||||
|
||||
if p < 0 or p >= 1:
|
||||
raise ValueError("The dropout probability should be in [0, 1)")
|
||||
|
||||
self._p_1 = 1 - p
|
||||
|
||||
def _extra_repr(self):
|
||||
return f"p={1-self._p_1}"
|
||||
|
||||
def __call__(self, x):
|
||||
if x.ndim not in (3, 4):
|
||||
raise ValueError(
|
||||
f"Received input with {x.ndim} dimensions. Expected 3 or 4 dimensions."
|
||||
)
|
||||
|
||||
if self._p_1 == 1 or not self.training:
|
||||
return x
|
||||
|
||||
# Dropout is applied on the whole channel
|
||||
# 3D input: (1, 1, C)
|
||||
# 4D input: (B, 1, 1, C)
|
||||
mask_shape = x.shape
|
||||
mask_shape[-2] = mask_shape[-3] = 1
|
||||
|
||||
mask = mx.random.bernoulli(p=self._p_1, shape=mask_shape)
|
||||
return (1 / self._p_1) * mask * x
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user