mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-24 06:28:08 +08:00
docs
This commit is contained in:

committed by
CircleCI Docs

parent
efe5c824af
commit
ea288788f8
45
docs/build/html/_sources/python/random.rst
vendored
Normal file
45
docs/build/html/_sources/python/random.rst
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
.. _random:
|
||||
|
||||
Random
|
||||
======
|
||||
|
||||
Random sampling functions in MLX use an implicit global PRNG state by default.
|
||||
However, all function take an optional ``key`` keyword argument for when more
|
||||
fine-grained control or explicit state management is needed.
|
||||
|
||||
For example, you can generate random numbers with:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
for _ in range(3):
|
||||
print(mx.random.uniform())
|
||||
|
||||
which will print a sequence of unique pseudo random numbers. Alternatively you
|
||||
can explicitly set the key:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
key = mx.random.key(0)
|
||||
for _ in range(3):
|
||||
print(mx.random.uniform(key=key))
|
||||
|
||||
which will yield the same pseudo random number at each iteration.
|
||||
|
||||
Following `JAX's PRNG design <https://jax.readthedocs.io/en/latest/jep/263-prng.html>`_
|
||||
we use a splittable version of Threefry, which is a counter-based PRNG.
|
||||
|
||||
.. currentmodule:: mlx.core.random
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
seed
|
||||
key
|
||||
split
|
||||
bernoulli
|
||||
categorical
|
||||
gumbel
|
||||
normal
|
||||
randint
|
||||
uniform
|
||||
truncated_normal
|
Reference in New Issue
Block a user