Add matrix inversion primitive (#822)

This commit is contained in:
nicolov 2024-03-15 14:34:36 +01:00 committed by GitHub
parent 19ec023256
commit eaba55c9bf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 204 additions and 4 deletions

View File

@ -74,6 +74,7 @@ DEFAULT(Sort)
DEFAULT(StopGradient) DEFAULT(StopGradient)
DEFAULT_MULTI(SVD) DEFAULT_MULTI(SVD)
DEFAULT(Transpose) DEFAULT(Transpose)
DEFAULT(Inverse)
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) { void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1); assert(inputs.size() == 1);

View File

@ -54,6 +54,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp ${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp ${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp ${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
) )

View File

@ -105,6 +105,7 @@ DEFAULT_MULTI(SVD)
DEFAULT(Tan) DEFAULT(Tan)
DEFAULT(Tanh) DEFAULT(Tanh)
DEFAULT(Transpose) DEFAULT(Transpose)
DEFAULT(Inverse)
namespace { namespace {

View File

@ -0,0 +1,95 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif
namespace mlx::core {
void inverse_impl(const array& a, array& inv) {
// Lapack uses the column-major convention. We take advantage of the following
// identity to avoid transposing (see
// https://math.stackexchange.com/a/340234):
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
// The inverse is computed in place, so just copy the input to the output.
copy(a, inv, a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
const int N = a.shape(-1);
const size_t num_matrices = a.size() / (N * N);
int info;
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
for (int i = 0; i < num_matrices; i++) {
// Compute LU factorization.
sgetrf_(
/* m = */ &N,
/* n = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU factorization failed with error code " << info;
throw std::runtime_error(ss.str());
}
static const int lwork_query = -1;
float workspace_size = 0;
// Compute workspace size.
sgetri_(
/* m = */ &N,
/* a = */ nullptr,
/* lda = */ &N,
/* ipiv = */ nullptr,
/* work = */ &workspace_size,
/* lwork = */ &lwork_query,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU workspace calculation failed with error code "
<< info;
throw std::runtime_error(ss.str());
}
const int lwork = workspace_size;
auto scratch =
array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
// Compute inverse.
sgetri_(
/* m = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
/* lwork = */ &lwork,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: inversion failed with error code " << info;
throw std::runtime_error(ss.str());
}
}
}
void Inverse::eval(const std::vector<array>& inputs, array& output) {
if (inputs[0].dtype() != float32) {
throw std::runtime_error("[Inverse::eval] only supports float32.");
}
inverse_impl(inputs[0], output);
}
} // namespace mlx::core

View File

@ -49,8 +49,7 @@ void svd_impl(const array& a, array& u, array& s, array& vt) {
// Will contain the indices of eigenvectors that failed to converge (not used // Will contain the indices of eigenvectors that failed to converge (not used
// here but required by lapack). // here but required by lapack).
std::vector<int> iwork; auto iwork = array::Data{allocator::malloc_or_wait(sizeof(int) * 12 * K)};
iwork.resize(12 * K);
static const int lwork_query = -1; static const int lwork_query = -1;
@ -82,7 +81,7 @@ void svd_impl(const array& a, array& u, array& s, array& vt) {
/* ldvt = */ &ldvt, /* ldvt = */ &ldvt,
/* work = */ &workspace_dimension, /* work = */ &workspace_dimension,
/* lwork = */ &lwork_query, /* lwork = */ &lwork_query,
/* iwork = */ iwork.data(), /* iwork = */ static_cast<int*>(iwork.buffer.raw_ptr()),
/* info = */ &info); /* info = */ &info);
if (info != 0) { if (info != 0) {
@ -120,7 +119,7 @@ void svd_impl(const array& a, array& u, array& s, array& vt) {
/* ldvt = */ &ldvt, /* ldvt = */ &ldvt,
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()), /* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
/* lwork = */ &lwork, /* lwork = */ &lwork,
/* iwork = */ iwork.data(), /* iwork = */ static_cast<int*>(iwork.buffer.raw_ptr()),
/* info = */ &info); /* info = */ &info);
if (info != 0) { if (info != 0) {

View File

@ -900,4 +900,8 @@ void SVD::eval_gpu(
throw std::runtime_error("[SVD::eval_gpu] Metal SVD NYI."); throw std::runtime_error("[SVD::eval_gpu] Metal SVD NYI.");
} }
void Inverse::eval_gpu(const std::vector<array>& inputs, array& output) {
throw std::runtime_error("[Inverse::eval_gpu] Metal inversion NYI.");
}
} // namespace mlx::core } // namespace mlx::core

View File

@ -98,6 +98,7 @@ NO_GPU_MULTI(SVD)
NO_GPU(Tan) NO_GPU(Tan)
NO_GPU(Tanh) NO_GPU(Tanh)
NO_GPU(Transpose) NO_GPU(Transpose)
NO_GPU(Inverse)
namespace fast { namespace fast {
NO_GPU_MULTI(RoPE) NO_GPU_MULTI(RoPE)

View File

@ -238,4 +238,27 @@ std::vector<array> svd(const array& a, StreamOrDevice s /* = {} */) {
{a}); {a});
} }
array inv(const array& a, StreamOrDevice s /* = {} */) {
if (a.dtype() != float32) {
std::ostringstream msg;
msg << "[linalg::inv] Arrays must type float32. Received array "
<< "with type " << a.dtype() << ".";
throw std::invalid_argument(msg.str());
}
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::inv] Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
throw std::invalid_argument(
"[linalg::inv] Inverses are only defined for square matrices.");
}
return array(
a.shape(), a.dtype(), std::make_unique<Inverse>(to_stream(s)), {a});
}
} // namespace mlx::core::linalg } // namespace mlx::core::linalg

View File

@ -64,4 +64,6 @@ std::pair<array, array> qr(const array& a, StreamOrDevice s = {});
std::vector<array> svd(const array& a, StreamOrDevice s = {}); std::vector<array> svd(const array& a, StreamOrDevice s = {});
array inv(const array& a, StreamOrDevice s = {});
} // namespace mlx::core::linalg } // namespace mlx::core::linalg

View File

@ -1897,4 +1897,18 @@ class SVD : public Primitive {
void eval(const std::vector<array>& inputs, std::vector<array>& outputs); void eval(const std::vector<array>& inputs, std::vector<array>& outputs);
}; };
/* Matrix inversion primitive. */
class Inverse : public UnaryPrimitive {
public:
explicit Inverse(Stream stream) : UnaryPrimitive(stream){};
void eval_cpu(const std::vector<array>& inputs, array& output) override;
void eval_gpu(const std::vector<array>& inputs, array& output) override;
DEFINE_PRINT(Inverse)
private:
void eval(const std::vector<array>& inputs, array& output);
};
} // namespace mlx::core } // namespace mlx::core

View File

@ -241,4 +241,27 @@ void init_linalg(py::module_& parent_module) {
tuple(array, array, array): The ``U``, ``S``, and ``Vt`` matrices, such that tuple(array, array, array): The ``U``, ``S``, and ``Vt`` matrices, such that
``A = U @ diag(S) @ Vt`` ``A = U @ diag(S) @ Vt``
)pbdoc"); )pbdoc");
m.def(
"inv",
&inv,
"a"_a,
py::kw_only(),
"stream"_a = none,
R"pbdoc(
inv(a: array, *, stream: Union[None, Stream, Device] = None) -> array
Compute the inverse of a square matrix.
This function supports arrays with at least 2 dimensions. When the input
has more than two dimensions, the inverse is computed for each matrix
in the last two dimensions of ``a``.
Args:
a (array): Input array.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: ``ainv`` such that ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``
)pbdoc");
} }

View File

@ -136,6 +136,20 @@ class TestLinalg(mlx_tests.MLXTestCase):
mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, M, rtol=1e-5, atol=1e-7) mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, M, rtol=1e-5, atol=1e-7)
) )
def test_inverse(self):
A = mx.array([[1, 2, 3], [6, -5, 4], [-9, 8, 7]], dtype=mx.float32)
A_inv = mx.linalg.inv(A, stream=mx.cpu)
self.assertTrue(mx.allclose(A @ A_inv, mx.eye(A.shape[0]), rtol=0, atol=1e-6))
# Multiple matrices
B = A - 100
AB = mx.stack([A, B])
invs = mx.linalg.inv(AB, stream=mx.cpu)
for M, M_inv in zip(AB, invs):
self.assertTrue(
mx.allclose(M @ M_inv, mx.eye(M.shape[0]), rtol=0, atol=1e-5)
)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()

View File

@ -300,3 +300,25 @@ TEST_CASE("test SVD factorization") {
CHECK_EQ(S.dtype(), float32); CHECK_EQ(S.dtype(), float32);
CHECK_EQ(Vt.dtype(), float32); CHECK_EQ(Vt.dtype(), float32);
} }
TEST_CASE("test matrix inversion") {
// 0D and 1D throw
CHECK_THROWS(linalg::inv(array(0.0), Device::cpu));
CHECK_THROWS(linalg::inv(array({0.0, 1.0}), Device::cpu));
// Unsupported types throw
CHECK_THROWS(linalg::inv(array({0, 1}, {1, 2}), Device::cpu));
// Non-square throws.
CHECK_THROWS(linalg::inv(array({1, 2, 3, 4, 5, 6}, {2, 3}), Device::cpu));
const auto prng_key = random::key(42);
const auto A = random::normal({5, 5}, prng_key);
const auto A_inv = linalg::inv(A, Device::cpu);
const auto identity = eye(A.shape(0));
CHECK(allclose(matmul(A, A_inv), identity, /* rtol = */ 0, /* atol = */ 1e-6)
.item<bool>());
CHECK(allclose(matmul(A_inv, A), identity, /* rtol = */ 0, /* atol = */ 1e-6)
.item<bool>());
}