mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 07:58:14 +08:00 
			
		
		
		
	Improve stability of BCE loss calculation for input probabilities close to or exactly 0 or 1 (#1280)
* Improve stability of BCE loss calculation * Standardize comment * Apply formatting with black via pre-commit * Add usage recommendation to docstring * Update python/mlx/nn/losses.py --------- Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
This commit is contained in:
		| @@ -125,8 +125,34 @@ class TestLosses(mlx_tests.MLXTestCase): | ||||
|             expected_sum = mx.sum(expected_none) | ||||
|             self.assertTrue(mx.allclose(losses_sum, expected_sum)) | ||||
|  | ||||
|         def _test_tiny_probs_as_inputs(): | ||||
|             TINY_PROB = 1e-59 | ||||
|             probs = mx.array([0, TINY_PROB, 1 - TINY_PROB, 1]) | ||||
|             targets = mx.array([0, 0, 1, 1]) | ||||
|  | ||||
|             losses_none = nn.losses.binary_cross_entropy( | ||||
|                 probs, targets, with_logits=False, reduction="none" | ||||
|             ) | ||||
|             expected_none = mx.array([0.0, TINY_PROB, TINY_PROB, 0.0]) | ||||
|             self.assertTrue(mx.allclose(losses_none, expected_none)) | ||||
|  | ||||
|             # Test with reduction 'mean' | ||||
|             losses_mean = nn.losses.binary_cross_entropy( | ||||
|                 probs, targets, with_logits=False, reduction="mean" | ||||
|             ) | ||||
|             expected_mean = mx.mean(expected_none) | ||||
|             self.assertTrue(mx.allclose(losses_mean, expected_mean)) | ||||
|  | ||||
|             # Test with reduction 'sum' | ||||
|             losses_sum = nn.losses.binary_cross_entropy( | ||||
|                 probs, targets, with_logits=False, reduction="sum" | ||||
|             ) | ||||
|             expected_sum = mx.sum(expected_none) | ||||
|             self.assertTrue(mx.allclose(losses_sum, expected_sum)) | ||||
|  | ||||
|         _test_logits_as_inputs() | ||||
|         _test_probs_as_inputs() | ||||
|         _test_tiny_probs_as_inputs() | ||||
|  | ||||
|     def test_l1_loss(self): | ||||
|         predictions = mx.array([0.5, 0.2, 0.9, 0.0]) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Paul Paczuski
					Paul Paczuski