Add quantize/dequantize for mxfp8 and nvfp4 (#2688)

* Add quantize/dequantize slow path for mxfp8 and nvfp4

* fast cuda kernel for mx/nv quantization

* fallback for cuda < 12.8 (#2697)

* format (#2700)

* fix (#2701)

* metal kernels

* docs

* fix jit

* add default bits and group sizes

* improve quant docs

* fix output type of mxfp4 matmuls
This commit is contained in:
Awni Hannun
2025-10-28 16:23:12 -07:00
committed by GitHub
parent 460691a0e8
commit ec72b44417
25 changed files with 1400 additions and 588 deletions

View File

@@ -51,6 +51,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/fp_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/convert_fp8.cu
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
@@ -58,6 +59,11 @@ target_sources(
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
# fp4 is not available on < 12.8
if(CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 12.8.0)
target_include_directories(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/quantized/)
endif()
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)

View File

@@ -306,7 +306,7 @@ void affine_dequantize(
enc.set_input_array(scales);
enc.set_input_array(biases);
enc.set_output_array(w);
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
dispatch_float_types(w.dtype(), "affine_dequantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;

View File

@@ -0,0 +1,83 @@
#pragma once
struct __nv_fp8_e8m0 {
__device__ __nv_fp8_e8m0(float x) {
if (!std::isfinite(x)) {
__x = 0xFF;
return;
}
if (x < 0.0f) {
__x = 0x00;
return;
}
float le = std::log2f(x);
int n = static_cast<int>(std::nearbyintf(le));
n = n < -127 ? -127 : n;
n = n > 127 ? 127 : n;
__x = static_cast<uint8_t>(n + 127);
}
__device__ operator float() {
if (__x == 0xFF) {
return std::numeric_limits<float>::quiet_NaN();
}
return std::ldexp(1.0f, static_cast<int>(__x) - 127);
}
uint8_t __x{0};
};
struct __nv_fp4_e2m1 {
__device__ __nv_fp4_e2m1(float x) {
if (std::isnan(x)) {
__x = 0x7;
return;
}
const uint8_t sign_bit = (std::signbit(x)) ? 0x8 : 0x0;
x = std::abs(x);
if (x > 5.0f) {
__x = 0x7;
} else if (x >= 3.5f) {
__x = 0x6;
} else if (x > 2.5f) {
__x = 0x5;
} else if (x >= 1.75f) {
__x = 0x4;
} else if (x > 1.25f) {
__x = 0x3;
} else if (x >= 0.75f) {
__x = 0x2;
} else if (x > 0.25f) {
__x = 0x1;
} else {
__x = 0x0;
}
__x |= sign_bit;
}
__device__ operator float() {
static const float LUT[16] = {
0.0f,
0.5f,
1.0f,
1.5f,
2.0f,
3.0f,
4.0f,
6.0f,
-0.0f,
-0.5f,
-1.0f,
-1.5f,
-2.0f,
-3.0f,
-4.0f,
-6.0f};
return LUT[__x];
}
uint8_t __x{0};
};

View File

@@ -0,0 +1,216 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/quantized/quantized.h"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <cuda_fp4.h>
#include <cuda_fp8.h>
namespace mlx::core {
namespace cu {
template <int bits>
struct Quantize {
__device__ uint8_t operator()(float x) {
if constexpr (bits == 8) {
return __nv_fp8_e4m3(x).__x;
} else {
return __nv_fp4_e2m1(x).__x;
}
}
};
template <int bits>
struct Dequantize {
__device__ float operator()(uint8_t x) {
if constexpr (bits == 8) {
return float(*(__nv_fp8_e4m3*)(&x));
} else {
return float(*(__nv_fp4_e2m1*)(&x));
}
}
};
namespace cg = cooperative_groups;
template <typename T, int group_size, int bits, bool use_mx_scale>
__global__ void
fp_quantize(const T* w, uint8_t* out, uint8_t* scales, size_t size) {
auto block_size = cg::this_thread_block().dim_threads();
auto block_idx = cg::this_thread_block().group_index();
auto idx_in_block = cg::this_thread_block().thread_index();
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
auto grid_dim_x =
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
size_t index = tidx + grid_dim_x * size_t(tidy);
if (index >= size) {
return;
}
float w_thread = w[index];
cg::greater<float> max_op;
auto warp = cg::tiled_partition<group_size>(cg::this_thread_block());
float scale = cg::reduce(warp, abs(w_thread), max_op);
scale /= bits == 4 ? 6.0f : 448.0f;
// Convert to mx scale or nv scale
using ScaleType =
std::conditional_t<use_mx_scale, __nv_fp8_e8m0, __nv_fp8_e4m3>;
auto s = ScaleType(scale);
uint8_t q_scale = s.__x;
scale = float(s);
// Write out the scales
size_t gindex = index / group_size;
if (index % group_size == 0) {
scales[gindex] = q_scale;
}
uint8_t output = Quantize<bits>{}(scale == 0 ? 0.0f : w_thread / scale);
if (bits == 4) {
uint8_t sval = warp.shfl_down(output, 1);
output |= sval << bits;
}
constexpr int pack_factor = bits == 8 ? 1 : 2;
if (index % pack_factor == 0) {
out[index / pack_factor] = output;
}
}
template <typename T, int group_size, int bits, bool use_mx_scale>
__global__ void
fp_dequantize(const uint8_t* w, const uint8_t* scales, T* out, size_t size) {
auto block_size = cg::this_thread_block().dim_threads();
auto block_idx = cg::this_thread_block().group_index();
auto idx_in_block = cg::this_thread_block().thread_index();
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
auto grid_dim_x =
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
constexpr int pack_factor = bits == 8 ? 1 : 2;
size_t offset = tidx + grid_dim_x * size_t(tidy);
size_t oindex = offset * pack_factor;
if (oindex >= size) {
return;
}
size_t gindex = oindex / group_size;
using ScaleType =
std::conditional_t<use_mx_scale, __nv_fp8_e8m0, __nv_fp8_e4m3>;
auto scale = float(((ScaleType*)(scales))[gindex]);
out += oindex;
uint val = w[offset];
#pragma clang loop unroll(full)
for (int i = 0; i < pack_factor; i++) {
uint8_t d;
if (bits == 4) {
d = (val >> (bits * i)) & 0x0f;
} else if (bits == 8) {
d = val;
}
out[i] = static_cast<T>(scale * Dequantize<bits>{}(d));
}
}
} // namespace cu
void fp_quantize(
const array& w,
array& wq,
array& scales,
int group_size,
int bits,
cu::CommandEncoder& enc,
const Stream& s) {
enc.set_input_array(w);
enc.set_output_array(wq);
enc.set_output_array(scales);
dispatch_float_types(w.dtype(), "fp_quantize", [&](auto type_tag) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
if constexpr (!std::is_same_v<T, double>) {
auto kernel = cu::fp_quantize<T, 32, 4, true>;
if (bits == 8) {
kernel = cu::fp_quantize<T, 32, 8, true>;
} else if (group_size == 16) {
kernel = cu::fp_quantize<T, 16, 4, false>;
}
bool large = w.size() > UINT_MAX;
auto [num_blocks, block_dims] =
get_launch_args(w.size(), w.shape(), w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
w.data<T>(),
wq.data<uint8_t>(),
scales.data<uint8_t>(),
w.size());
} else {
throw std::runtime_error(
"[Quantize::eval_gpu] Can not quantize input with type float64.");
}
});
}
void fp_dequantize(
const array& wq,
const array& scales,
array& w,
int group_size,
int bits,
cu::CommandEncoder& enc,
const Stream& s) {
constexpr int uint8_per_uint32 = 4;
int packs_per_int = 8 / bits;
size_t size = w.size() / packs_per_int;
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
grid_shape.back() *= uint8_per_uint32;
enc.set_input_array(wq);
enc.set_input_array(scales);
enc.set_output_array(w);
dispatch_float_types(w.dtype(), "fp_dequantize", [&](auto type_tag) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
if constexpr (!std::is_same_v<T, double>) {
auto kernel = cu::fp_dequantize<T, 32, 4, true>;
if (bits == 8) {
kernel = cu::fp_dequantize<T, 32, 8, true>;
} else if (group_size == 16) {
kernel = cu::fp_dequantize<T, 16, 4, false>;
}
auto [num_blocks, block_dims] =
get_launch_args(size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
wq.data<uint8_t>(),
scales.data<T>(),
w.data<T>(),
w.size());
} else {
throw std::runtime_error(
"[Quantize::eval_gpu] Can not dequantize to output with type float64.");
}
});
}
} // namespace mlx::core

View File

@@ -57,23 +57,30 @@ void fast::Quantize::eval_gpu(
if (dequantize_) {
auto wq = ensure_row_contiguous(inputs[0], enc, s);
auto scales = ensure_row_contiguous(inputs[1], enc, s);
auto biases = ensure_row_contiguous(inputs[2], enc, s);
auto& w = outputs[0];
w.set_data(allocator::malloc(w.nbytes()));
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
if (mode_ == QuantizationMode::Affine) {
auto biases = ensure_row_contiguous(inputs[2], enc, s);
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
} else {
fp_dequantize(wq, scales, w, group_size_, bits_, enc, s);
}
} else {
auto w = ensure_row_contiguous(inputs[0], enc, s);
auto& wq = outputs[0];
auto& scales = outputs[1];
auto& biases = outputs[2];
wq.set_data(allocator::malloc(wq.nbytes()));
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
if (mode_ == QuantizationMode::Affine) {
auto& biases = outputs[2];
biases.set_data(allocator::malloc(biases.nbytes()));
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
} else {
fp_quantize(w, wq, scales, group_size_, bits_, enc, s);
}
}
}

View File

@@ -24,4 +24,22 @@ void affine_dequantize(
cu::CommandEncoder& enc,
const Stream& s);
void fp_quantize(
const array& w,
array& wq,
array& scales,
int group_size,
int bits,
cu::CommandEncoder& enc,
const Stream& s);
void fp_dequantize(
const array& wq,
const array& scales,
array& w,
int group_size,
int bits,
cu::CommandEncoder& enc,
const Stream& s);
} // namespace mlx::core