Add optimizers (AdaMax, AdaDelta, RMSprop) and ordering optimizer classes (#142)

* Add AdaMax, AdaDelta, RMSprop
This commit is contained in:
YUN, Junwoo 2023-12-17 13:43:15 +08:00 committed by GitHub
parent a67bbfe745
commit eebd7c275d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 219 additions and 37 deletions

View File

@ -38,4 +38,9 @@ model's parameters and the **optimizer state**.
OptimizerState
Optimizer
SGD
RMSprop
Adagrad
AdaDelta
Adam
AdamW
Adamax

View File

@ -82,15 +82,15 @@ class SGD(Optimizer):
.. math::
v_{t+1} &= \mu v_t + g_t \\
v_{t+1} &= \mu v_t + (1 - \tau) g_t \\
w_{t+1} &= w_t - \lambda v_{t+1}
Args:
learning_rate (float): The learning :math:`\lambda` for the update
momentum (float, optional): The momentum strength :math:`\mu` (default: 0)
weight_decay (float, optional): The weight decay (L2 penalty) (default: 0)
dampening (float, optional): Dampening for momentum :math:`\tau` (default: 0)
nesterov (bool, optional): Enables Nesterov momentum (default: False)
learning_rate (float): The learning rate :math:`\lambda`.
momentum (float, optional): The momentum strength :math:`\mu`. Default: ``0``
weight_decay (float, optional): The weight decay (L2 penalty). Default: ``0``
dampening (float, optional): Dampening for momentum :math:`\tau`. Default: ``0``
nesterov (bool, optional): Enables Nesterov momentum. Default: ``False``
"""
def __init__(
@ -140,20 +140,181 @@ class SGD(Optimizer):
return parameter - self.learning_rate * update
class RMSprop(Optimizer):
r"""Implementation of the RMSprop optimizer [1].
[1]: Tieleman, T. and Hinton, G. 2012. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning
.. math::
v_{t+1} &= \alpha v_t + (1 - \alpha) g_t^2 \\
w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1}} + \epsilon}
Args:
learning_rate (float): The learning rate :math:`\lambda`.
alpha (float, optional): The smoothing constant :math:`\alpha`.
Default: ``0.99``
eps (float, optional): The term :math:`\epsilon` added to the denominator
to improve numerical stability. Default: ``1e-8``
"""
def __init__(self, learning_rate: float, alpha: float = 0.99, eps: float = 1e-8):
super().__init__()
self.learning_rate = learning_rate
self.alpha = alpha
self.eps = eps
if self.alpha < 0.0:
raise ValueError(
f"RMSprop alpha should be >=0, {self.alpha} was provided instead"
)
if self.eps < 0.0:
raise ValueError(
f"RMSprop epsilon should be >0, {self.eps} was provided instead"
)
def apply_single(
self, gradient: mx.array, parameter: mx.array, state: OptimizerState
):
"""Performs the RMSprop parameter update and stores :math:`v` in the optimizer state."""
lr = self.learning_rate
alpha = self.alpha
eps = self.eps
v = state.get("v", mx.zeros_like(gradient))
v = alpha * v + (1 - alpha) * mx.square(gradient)
state["v"] = v
return parameter - lr * gradient / (mx.sqrt(v) + eps)
class Adagrad(Optimizer):
r"""Implementation of the Adagrad optimizer [1].
Our Adagrad implementation follows the original paper. In detail,
[1]: Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods
for online learning and stochastic optimization. JMLR 2011.
.. math::
v_{t+1} &= v_t + g_t^2 \\
w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1}} + \epsilon}
Args:
learning_rate (float): The learning rate :math:`\lambda`.
eps (float, optional): The term :math:`\epsilon` added to the
denominator to improve numerical stability. Default: ``1e-8``
"""
def __init__(self, learning_rate: float, eps: float = 1e-8):
super().__init__()
self.learning_rate = learning_rate
self.eps = eps
if self.eps < 0.0:
raise ValueError(
f"Adagrad epsilon should be >0, {self.eps} was provided instead"
)
def apply_single(
self, gradient: mx.array, parameter: mx.array, state: OptimizerState
):
"""Performs the Adagrad parameter update and stores :math:`v` in the
optimizer state."""
lr = self.learning_rate
eps = self.eps
v = state.get("v", mx.zeros_like(gradient))
v = v + mx.square(gradient)
state["v"] = v
return parameter - lr * gradient / (mx.sqrt(v) + eps)
class AdaDelta(Optimizer):
r"""Implementation of the AdaDelta optimizer with learning rate[1].
Our AdaDelta implementation follows the original paper. In detail,
[1]: Zeiler, M.D., 2012. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.
.. math::
v_{t+1} &= \rho v_t + (1 - \rho) g_t^2 \\
\Delta w_{t+1} &= \frac{\sqrt{u_t + \epsilon}}{\sqrt{v_{t+1} + \epsilon}} g_t \\
u_{t+1} &= \rho u_t + (1 - \rho) \Delta w_{t+1}^2 \\
w_{t+1} &= w_t - \lambda \Delta w_{t+1}
Args:
learning_rate (float): The learning rate :math:`\lambda`.
rho (float, optional): The coefficient :math:`\rho` used for computing a
running average of squared gradients. Default: ``0.9``
eps (float, optional): The term :math:`\epsilon` added to the denominator to improve
numerical stability. Ddefault: `1e-8`
"""
def __init__(self, learning_rate: float, rho: float = 0.9, eps: float = 1e-6):
super().__init__()
self.learning_rate = learning_rate
self.rho = rho
self.eps = eps
if self.rho < 0.0:
raise ValueError(
f"AdaDelta rho should be >=0, {self.rho} was provided instead"
)
if self.eps < 0.0:
raise ValueError(
f"AdaDelta epsilon should be >0, {self.eps} was provided instead"
)
def apply_single(
self, gradient: mx.array, parameter: mx.array, state: OptimizerState
):
"""Performs the AdaDelta parameter update and stores :math:`v` and
:math:`u` in the optimizer state."""
lr = self.learning_rate
rho = self.rho
eps = self.eps
v = state.get("v", mx.zeros_like(gradient))
u = state.get("s", mx.zeros_like(gradient))
v = rho * v + (1 - rho) * mx.square(gradient)
d = mx.sqrt(u + eps) / mx.sqrt(v + eps) * gradient
u = rho * u + (1 - rho) * mx.square(d)
state["v"] = v
state["u"] = u
return parameter - lr * d
class Adam(Optimizer):
r"""Implementation of the Adam optimizer [1].
Our Adam implementation follows the original paper and omits the bias
correction in the first and second moment estimates. In detail,
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic
optimization. ICLR 2015.
.. math::
m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\
v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\
w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}}
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic
optimization. ICLR 2015.
Args:
learning_rate (float): The learning rate :math:`\lambda`.
betas (Tuple[float, float], optional): The coefficients
:math:`(\beta_1, \beta_2)` used for computing running averages of the
gradient and its square. Default: ``(0.9, 0.999)``
eps (float, optional): The term :math:`\epsilon` added to the
denominator to improve numerical stability. Default: ``1e-8``
"""
def __init__(
@ -188,8 +349,11 @@ class AdamW(Adam):
r"""Implementation of the AdamW optimizer [1].
Following the above convention, in contrast with [1], we do not use bias
correction in the first and second moments for AdamW. We update the weights
with a weight_decay (λ) value:
correction in the first and second moments for AdamW. We update the weights
with a weight_decay (:math:`\lambda`) value:
[1]: Loshchilov, I. and Hutter, F., 2019. Decoupled weight decay
regularization. ICLR 2019.
.. math::
@ -197,8 +361,15 @@ class AdamW(Adam):
v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\
w_{t+1} &= w_t - \alpha (\frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}} + \lambda w_t)
[1]: Loshchilov, I. and Hutter, F., 2019. Decoupled weight decay
regularization. ICLR 2019.
Args:
learning_rate (float): The learning rate :math:`\alpha`.
betas (Tuple[float, float], optional): The coefficients
:math:`(\beta_1, \beta_2)` used for computing running averages of the
gradient and its square. Default: ``(0.9, 0.999)``
eps (float, optional): The term :math:`\epsilon` added to the
denominator to improve numerical stability. Default: ``1e-8``
weight_decay (float, optional): The weight decay :math:`\lambda`.
Default: ``0``.
"""
def __init__(
@ -223,45 +394,51 @@ class AdamW(Adam):
)
class Adagrad(Optimizer):
r"""Implementation of the Adagrad optimizer [1].
class Adamax(Adam):
r"""Implementation of the Adamax optimizer. It is a variant of Adam based
on the infinity norm [1].
Our Adagrad implementation follows the original paper. In detail,
Our Adam implementation follows the original paper and omits the bias
correction in the first and second moment estimates. In detail,
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic
optimization. ICLR 2015.
.. math::
v_{t+1} &= v_t + g_t^2 \\
w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1} + \epsilon}}
m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\
v_{t+1} &= \max(\beta_2 v_t, |g_t|) \\
w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{v_{t+1} + \epsilon}
[1]: Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods
for online learning and stochastic optimization. JMLR 2011.
Args:
learning_rate (float): The learning rate :math:`\lambda`.
betas (Tuple[float, float], optional): The coefficients
:math:`(\beta_1, \beta_2)` used for computing running averages of the
gradient and its square. Default: ``(0.9, 0.999)``
eps (float, optional): The term :math:`\epsilon` added to the
denominator to improve numerical stability. Default: ``1e-8``
"""
def __init__(self, learning_rate: float, eps: float = 1e-8):
super().__init__()
self.learning_rate = learning_rate
self.eps = eps
if self.learning_rate < 0.0:
raise ValueError(
f"Adagrad learning rate should be >=0, {self.learning_rate} was provided instead"
)
if self.eps < 0.0:
raise ValueError(
f"Adagrad epsilon should be >0, {self.eps} was provided instead"
)
def __init__(
self, learning_rate: float, betas: List[float] = [0.9, 0.999], eps: float = 1e-8
):
super().__init__(learning_rate, betas, eps)
def apply_single(
self, gradient: mx.array, parameter: mx.array, state: OptimizerState
):
"""Performs the Adagrad parameter update and stores :math:`v` in the
optimizer state."""
"""Performs the Adamax parameter update and stores :math:`v` and
:math:`m` in the optimizer state."""
lr = self.learning_rate
b1, b2 = self.betas
eps = self.eps
m = state.get("m", mx.zeros_like(gradient))
v = state.get("v", mx.zeros_like(gradient))
v = v + mx.square(gradient)
m = b1 * m + (1 - b1) * gradient
v = mx.maximum(b2 * v, mx.abs(gradient))
state["m"] = m
state["v"] = v
return parameter - lr * gradient / (mx.sqrt(v) + eps)
return parameter - lr * m / (v + eps)